(2) Ajat Sudrajat
(3) Itang Purnama
*corresponding author
AbstractThe success of a dairy farm depends heavily on the management of the cattle. A good dairy farm must ensure three key aspects are met: breeding stock, feed, and management. Dairy farming significantly impacts environmental pollution as a contributor to methane gas emissions. This article presents effective solutions to mitigate the negative environmental impacts of dairy farm waste. Feed is a crucial component that requires attention because it impacts the rumen ecosystem, which directly impacts livestock productivity, particularly dairy cattle. Legumes are a suitable alternative feed for reducing excess methane in dairy cattle because they contain bioactive compounds, including tannins, saponins, and flavonoids, which can reduce methane production. Keywordslegumes, bioactive, methane gas, dairy cows
|
DOIhttps://doi.org/10.31604/jas.v10i1.22837 |
Article metrics10.31604/jas.v10i1.22837 Abstract views : 0 | PDF views : 0 |
Cite |
Full Text Download
|
References
Ahmed, M.A., S. Jusoh, A.R. Alimon, M. Ebrahimi, & A.A. Samsudin. 2018. Nutritive and antinutritive evaluation of Kleinhovia hospita, Leucaena leucocephala and Gliricidia sepium with respect to their effects on in vitro rumen fermentation and gas production. Tropical Animal Science Journal 41(2):128-136. DOI: https://doi.org/10.5398/tasj.2018. 41.2.128.
Alim, S., Fadilla., & Rismayanti. 2025. Penggunaan Rumen Sapi sebagai Agen Fermentasi untuk Mengurangi Kandungan Serat Kasar pada Tepung Bonggol Jagung. Jurnal Ilmiah Mahasiswa Agrokomplek, 4(1), 322-326.
Aldila, L., Haryuni, N., & Alam, Y. 2023. Dampak Perendaman Pada Air Rebusan Daun Bidara (Ziziphus mauritiana) Terhadap Kualitas Intrinsik Telur Ayam Pada Penyimpanan Suhu Ruang. Journal of Science Nusantara, 3(3), 106-113.
Beauchemin, K. A., Kreuzer, M., O’mara, F., & McAllister, T. A. 2008. Nutritional management for enteric methane abatement: a review. Australian Journal of Experimental Agriculture, 48(2), 21-27.
Cabral, L. D. S., & Weimer, P. J. 2024. Megasphaera elsdenii: its role in ruminant nutrition and its potential industrial application for organic acid biosynthesis. Microorganisms, 12(1), 219.
Chaji, M. & S. Hoseyni. 2024. The Digestibility, Fermentation, and Nutritional Value of Sesbania Plant (Sesbania sp. L) for Ruminants. Research On Animal Production, 15(2), 107-118.
Chuang, W.-Y., Lin, L.-J., Shih, H.-D., Shy, Y.-M., Chang, S.-C., & Lee, T.-T. 2021. The potential utilization of high-fiber agricultural by-products as monogastric animal feed and feed additives: A review. Animals, 11(7), 2098.
Cottle, D. J., Nolan, J. V., & Wiedemann, S. G. 2011. Ruminant enteric methane mitigation: A review. Animal Production Science, 51(6), 491–514.
Edi, D. N., & Haryuni, N. 2023. Estimation of Greenhouse Gas Emission Burden of Livestock Sector in East Java Province, Indonesia: Estimasi Beban Emisi Gas Rumah Kaca dari Sektor Peternakan di Provinsi Jawa Timur, Indonesia. Jurnal Teknologi Lingkungan, 24(2), 157-165. https://doi.org/https://doi.org/10.55981/jtl.2023.10 04.
Endrawati, E., Hariyono, D. N. H., & Lestari, S. 2025. Identifikasi Jenis Leguminosa Untuk Pakan Kambing Di Lahan Pertanian Kampus IV Universitas Khairun, Kabupaten Halmahera Utara. Jurnal Nutrisi Ternak Tropis, 8(1), 1-17.
Gülümser, E., Mut, H., Sucu, E., Ba?aran, U., Çopur Do?rusöz, M. 2024. The impact of adding hops to alfalfa at different rates on silage quality and methane emissions in vitro. Turkish Journal of Agriculture and Forestry, 48(1), pp. 71–80, 7.
Holik, S., Malyugina, S., Staffa, A., Filipek, J., Horky, P., Kadek, R., & Illek, J. 2025. Effect of dietary plant tannin supplementation on rumen fermentation and enteric methane production. Journal of Animal and Feed Sciences, 34(2), 272-283.
Hossain, M. E., Chowdhury, B., Islam, M. M., Akhter, N., Hoque, M. A., Nizam, & Rahman, M. T. 2025. Low-level Substitution of Urea Fertilizer with Organic Manure and Its Advantages in Wheat Cultivation under Subtropical Conditions in Bangladesh. Journal of Scientific Research and Reports, 31(12), 39-51.
IPCC, “IPCC Fourth Assessment Report: Climate Change 2007,” Climate Change 2007: Synthesis Report, 2007. [Online]. Available: https://www.ipcc.ch. [Accessed: 29-Nov-2025].
Johnson, K.A. and Johnson, D.E. 1995. Methane Emissions from Cattle. Journal of Animal Science, 73, 2483-2492.
Khorasani, O., Chaji, M., & Baghban, F. 2023. Comparison of the effect of Saccharomyces cerevisiae–Megasphaera elsdenii and buffer on growth performance, digestibility, ruminal histomorphometry, and carcass characteristics of fattening lambs in high concentrate diet. Tropical Animal Health and Production, 55(2), 135.
Ku-Vera, J.C.; Jiménez-Ocampo, R.; Valencia-Salazar, S.S.; Montoya-Flores, M.D.; Molina-Botero, I.C.; Arango, J.; Gómez-Bravo, C.A.; Aguilar-Pérez, C.F.; Solorio-Sánchez, F.J. 2020. Role of Secondary Plant Metabolites on Enteric Methane Mitigation in Ruminants. Front. Vet. Sci, 7, 584.
Majewska, M. P., Miltko, R., Be??ecki, G., K?dzierska, A., & Kowalik, B. 2023. Rumen protozoa population and carbohydrate-digesting enzymes in sheep fed a diet supplemented with hydrolysable tannins. Annals of Animal Science, 23(2), 561-570.
Mangwe, M. C., Bryant, R. H., Olszewski, A., Herath, H. M. G. P., & Al-Marashdeh, O. 2024. Can the Inclusion of Forage Chicory in the Diet of Lactating Dairy Cattle Alter Milk Production and Milk Fatty Acid Composition? Findings of a Multilevel Meta-Analysis. Animals, 14(7), 1002.
Moreira, L. G., Baldissera, T. C., Cazarotto, C. J., Martini, M. I., Dornelles, R. D. R., & Ribeiro-Filho, H. M. 2025. Milk Production and Enteric Methane Emissions in Dairy Cows Grazing Annual Ryegrass Alone or Intercropped with Forage Legumes. Animals, 15(16), 2329.
Olivares, J., Mejía, S. R., Hernández, S. R., Rosales, T. R., Valdéz, M. Á. D., Lobato, V. J., & Salgado, L. S. 2025. Prácticas de manejo para la producción de (Vigna unguiculata [L.] Walp) en productores del Municipio de Pungarabato, Guerrero, México. POLIBOTÁNICA, (60).
Oematan, N. N., Benu, I., Oematan, G., & Dato, T. O. D. 2024. Pengaruh lama waktu biofermentasi Chromolaena odorata dengan sumber karbon tepung putak terhadap konsentrasi VFA persial dan produksi gas metan. Animal Agricultura, 1(3), 133-142.
Patil, M. & S. Auti. 2022. Nutritional prospective of Sesbania species: an underutilized wild legume from Northern Western Ghats, Maharashtra, India. Acta fytotechn zootechn, 25 (2): 165–173.
Patra, A. K. & J. Saxena. 2010. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. J. Phytochemistry. 71: 1198– 1222
Rabee, A. E. 2025. Degradability and rumen microbiota modulation of sesbania, leucaena, and anabasis forages in the rumen of dromedary camels and Barki sheep. Agroforestry Systems, 99(6), 158.
Rimbawanto, E. A., Yusiati, L. M., Baliarti, E., & Utomo, R. 2015. Effect of condensed tannin of leucaena and calliandra leaves in protein trash fish silage on in vitro ruminal fermentation, microbial protein synthesis and digestibility. Animal production, 17(2), 83-91.
Saminathan, M., Gan, H. M., Abdullah, N., Wong, C. M. V. L., Ramiah, S. K., Tan, H. Y., & Ho, Y. W. 2017. Changes in rumen protozoal community by condensed tannin fractions of different molecular weights from a Leucaena leucocephala hybrid in vitro. Journal of applied microbiology, 123(1), 41-53.
Sandoval-Pelcastre, A.A., Ramírez-Mella, M., Rodríguez-Ávila, N.L., Candelaria-Martínez, B. 2020. Tropical trees and shrubs with potential to reduce the production of methane in ruminants Árboles y arbustos tropicales con potencial para disminuir la producción de metano en rumiantes. Tropical and Subtropical Agroecosystems, 23(2), 33.
Sezmis, G., Kaya, A., Kaya, H., Macit, M., Erten, K., Palangi, V., & Lackner, M. 2023. Comparison of black tea waste and legume roughages: methane mitigation and rumen fermentation parameters. Metabolites, 13(6), 731.
Stifkens, A., Matthews, E.M., McSweeney, C.S., Charmley, E. 2022. Increasing the proportion of Leucaena leucocephala in hay-fed beef steers reduces methane yield. Animal Production Science, 62(7), pp. 622–632.
Villalba, J.J., S. Ates., & J.W. MacAdam. 2021. Non-fiber Carbohydrates in Forages and Their Influence on Beef Production Systems. Frontier In Sustainable Food Systems 5:566338. https://doi.org/10.3389/fsufs.2021.566338.
Widyarini, S.; Nagari, F.S.; Hanim, C.; Bachruddin, Z.; Muhlisin, M.; Mira Yusiati, L. 2021. Effect of Nigella sativa L. as Saponin Sources on In Vitro Rumen Fermentation, Enzyme Activity and Nutrients Digestibility. Adv. Anim. Vet. Sci, 9, 2247–2257.
Weggler, K., Gerster, E., & Messner, J. 2025. The benefit of fodder legumes as dairy feeding source for reducing greenhousegas emissions of modelled farms. Frontiers in Sustainable Food Systems, 9, 1583852.
Yusiati, L. M., Kurniawati, A., Hanim, C., & Anas, D. M. 2018. Protein binding capacity of different forages tannin. In IOP Conference Series: Earth and Environmental Science (Vol. 119, No. 1, p. 012007). IOP Publishing.
Refbacks
- There are currently no refbacks.
Fakultas Peternakan Universitas Muhammadiyah Tapanuli Selatan
Jl. Raja Inal Siregar, Tanggal, Padangsidimpuan, Sumatera Utara
Tel / fax : (0634) 21696 email : jurnal.peternakan@um-tapsel.ac.id
issn Cetak : 2548-3129   issn Online : 2599-1736

This work is licensed under a Creative Commons Attribution 4.0 International License.






Download