EDUKASI PENANGGULANGAN LIMBAH BATIK DAN POTENSI BAHAYA YANG DITIMBULKAN KEPADA PENGRAJIN BATIK DI KOTA JAMBI
Abstract
Industri Batik ialah industri yang sedang berkembang dalam bidang pewarnaan tekstil. Pengrajin batik di Propinsi Jambi sangat banyak, akan tetapi pengolahan limbah batik masih sangat terbatas dikarenakan kurang nya edukasi akan bahaya limbah batik. Pengabdian ini bertujuan untuk memberikan edukasi kepada pengrajin batik akan bahaya limbah batik. Pada pengabdian ini juga dijelaskan alternatif cara pengolahan limbah batik sebelum dibuang ke lingkungan. Hasil dari pengabdian mampu menambah wawasan masyarakat akan bahaya limbah batik dan memahami cara pengolahannya.
Keywords
Full Text:
PDFReferences
Ahmedna, M., Marshall, W. E., & Rao, R. M. (2000). Surface properties of granular activated carbons from agricultural by-products and their effects on raw sugar decolorization. Bioresource Technology, 71(2), 103–112. https://doi.org/10.1016/S0960-8524(99)90069-X
Annadurai, G., Juang, R. S., & Lee, D. J. (2002). Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. Journal of Hazardous Materials, 92(3), 263–274. https://doi.org/10.1016/S0304-3894(02)00017-1
Atasasih, H. (2022). Sosialisasi “Isi Piringku” Pada Remaja Putri Sebagai Upaya Pencegahan Stunting. Dinamisia : Jurnal Pengabdian Kepada Masyarakat, 6(1), 116–121. https://doi.org/10.31849/dinamisia.v6i1.4685
Banat, F., Al-Asheh, S., & Makhadmeh, L. (2003). Preparation and examination of activated carbons from date pits impregnated with potassium hydroxide for the removal of methylene blue from aqueous solutions. Adsorption Science and Technology, 21(6), 597–606. https://doi.org/10.1260/026361703771953613
Blackburn, R. S. (2004). Natural polysaccharides and their interactions with dye molecules: Applications in effluent treatment. Environmental Science and Technology, 38(18), 4905–4909. https://doi.org/10.1021/es049972n
Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology, 97(9), 1061–1085. https://doi.org/10.1016/j.biortech.2005.05.001
Garg, V. K., Kumar, R., & Gupta, R. (2004). Removal of malachite green dye from aqueous solution by adsorption using agro-industry waste: A case study of Prosopis cineraria. Dyes and Pigments, 62(1), 1–10. https://doi.org/10.1016/j.dyepig.2003.10.016
Hashem, M. A. (2007). Adsorption of lead ions from aqueous solution by okra wastes. International Journal of Physical Sciences, 2(7), 178–184.
Hassanein, T.F. & Koumanova, B. (2010). Evaluation of ad-sorption potential of the agricultural waste wheat straw for Basic Yellow 21 (pp. 45. 407-414.). J Univ Chem Technol Metall.
Hazzaa, R., & Hussein, M. (2015). Adsorption of cationic dye from aqueous solution onto activated carbon prepared from olive stones. Environmental Technology and Innovation, 4, 36–51. https://doi.org/10.1016/j.eti.2015.04.002
Kadirvelu, K., & Namasivayam, C. (2000). Agricutural by-product as metal adsorbent: Sorption of lead(ii) from aqueous solution onto coirpith carbon. Environmental Technology (United Kingdom), 21(10), 1091–1097. https://doi.org/10.1080/09593330.2000.9618995
Kadirvelu, K., & Namasivayam, C. (2003). Activated carbon from coconut coirpith as metal adsorbent: Adsorption of Cd(II) from aqueous solution. Advances in Environmental Research, 7(2), 471–478. https://doi.org/10.1016/S1093-0191(02)00018-7
Kannan, N., & Sundaram, M. M. (2001). Kinetics and mechanism of removal of methylene blue by adsorption on various carbons - A comparative study. Dyes and Pigments, 51(1), 25–40. https://doi.org/10.1016/S0143-7208(01)00056-0
Körbahti, B. K., & Tanyolaç, A. (2008). Electrochemical treatment of simulated textile wastewater with industrial components and Levafix Blue CA reactive dye: Optimization through response surface methodology. Journal of Hazardous Materials, 151(2–3), 422–431. https://doi.org/10.1016/j.jhazmat.2007.06.010
Kouchou, A., Rais, N., Thoisy, J. C., Duplay, J., Ghazi, M., Elsass, F., Ijjaali, M., & El Ghachtouli, N. (2017). Behavior of Enzyme Activities Exposed to Contamination by Heavy Metals and Dissolved Organic Carbon in Calcareous Agricultural Soils. Soil and Sediment Contamination, 26(3), 259–276. https://doi.org/10.1080/15320383.2017.1289499
Kumar, A., Kadirvelu, K., Mishra, G. K., Rajagopal, C., & Nagar, P. N. (2008). Adsorptive removal of heavy metals from aqueous solution by treated sawdust ( Acacia arabica ). 150, 604–611. https://doi.org/10.1016/j.jhazmat.2007.05.030
Namasivayam, C., & Kavitha, D. (2002). Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. 54, 47–58.
Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents: A review. Journal of Hazardous Materials, 177(1–3), 70–80. https://doi.org/10.1016/j.jhazmat.2009.12.047
Rangabhashiyam, S., Anu, N., & Selvaraju, N. (2013). Sequestration of dye from textile industry wastewater using agricultural waste products as adsorbents. Journal of Environmental Chemical Engineering, 1(4), 629–641. https://doi.org/10.1016/j.jece.2013.07.014
Rashidi, H. R., Sulaiman, N. M. N., & Hashim, N. A. (2012). Batik Industry Synthetic Wastewater Treatment Using Nanofiltration Membrane. Procedia Engineering, 44, 2010–2012. https://doi.org/10.1016/j.proeng.2012.09.025
Reife, A., & Freeman, harold S. (1996). Environmental Chemistry of Dyes and Pigments. John Wiley and Sons,Inc.
Roque, F., Diaz, K., Ancco, M., Delgado, D., & Tejada, K. (2018). Biodepuration of domestic sewage, textile effluents and acid mine drainage using starch-based xerogel from recycled potato peels. Water Science and Technology, 77(5), 1250–1261. https://doi.org/10.2166/wst.2018.008
Silva, T. L., Cazetta, A. L., Souza, P. S. C., Zhang, T., Asefa, T., & Almeida, V. C. (2018). Mesoporous activated carbon fibers synthesized from denim fabric waste: Efficient adsorbents for removal of textile dye from aqueous solutions. Journal of Cleaner Production, 171, 482–490. https://doi.org/10.1016/j.jclepro.2017.10.034
Sun, Q., & Yang, L. (2003). The adsorption of basic dyes from aqueous solution on modified peat-resin particle. Water Research, 37(7), 1535–1544. https://doi.org/10.1016/S0043-1354(02)00520-1
Swarnkumar Reddy, & Osborne, W. J. (2020). Heavy metal determination and aquatic toxicity evaluation of textile dyes and effluents using Artemia salina. Biocatalysis and Agricultural Biotechnology, 25, 101574. https://doi.org/10.1016/j.bcab.2020.101574
Tseng, R. L., Wu, F. C., & Juang, R. S. (2003). Liquid-phase adsorption of dyes and phenols using pinewood-based activated carbons. Carbon, 41(3), 487–495. https://doi.org/10.1016/S0008-6223(02)00367-6
Valix, M., Cheung, W. H., & McKay, G. (2004). Preparation of activated carbon using low temperature carbonisation and physical activation of high ash raw bagasse for acid dye adsorption. Chemosphere, 56(5), 493–501. https://doi.org/10.1016/j.chemosphere.2004.04.004
Wakkel, M., Khiari, B., & Zagrouba, F. (2019). Textile wastewater treatment by agro-industrial waste: Equilibrium modelling, thermodynamics and mass transfer mechanisms of cationic dyes adsorption onto low-cost lignocellulosic adsorbent. Journal of the Taiwan Institute of Chemical Engineers, 96(xxxx), 439–452. https://doi.org/10.1016/j.jtice.2018.12.014
DOI: http://dx.doi.org/10.31604/jpm.v8i7.2823-2832
Refbacks
- There are currently no refbacks.