PENERAPAN MODEL PENYEMBUHAN DENGAN REGRESI COX HAZARD PROPORSIONAL PADA PENYAKIT KANKER KOLOREKTAL

Wirna Arifitriana, Danardono Danardono

Abstract


Survival  analysis  is  a  statistical  technique  used  to  analyze  the  data,  aims  to determine the variables that affect the outcome of a beginning to end the incident. One model of survival is a cure model is useful for estimating the proportion of patients who recover and the probability of survival of patients who did not recover until   the   deadline   given.   Analysis   on   Cox   regression   cure   model   Hazard Proportional with Maximum Likelihood Estimates and Algorithm Expectation Maximization (EM).

 Keywords: Cox Proportional Hazard Cure Model, MLE, EM algorithm, likelihood ratio test, Wald test.

 


References


Boag, J.W. 1949. Journal of the Royal Statistical Society. Series B (Methodological) Vol. 11, No. 1, pp. 15-53

Cox, D.R., 1972, Regression models and life tables (with Discussion), Journal of The Royal Statistical Society B 34, 187 – 220.

Danardono, 2012, Analisis Data Survival, Diktat Kuliah, UGM, Yogyakarta.

Farewell, V.T.1982. The use ofmixture models for analysis of survival data with long-term survivors. Biometrics 38, 1041 - 1046.

Farewell, V. T., 1986. The use of mixture models for the analysis: Are they worth the risk? Canadian Journal of Statistics 14, 257 – 262

Jones, D.R., Powles, R.L., Machin, D., and Sylvester, R.J. 1981. On Estimating the proportion of cured patients in clinical studies. Biometrie-Praximetrie 21, 1-11.

Kuk, A. Y. C. and Chen, C. H., 1992. A mixture model combining logistic regression with proportional hazards regression. Biometrika 79, 531-541.

Taylor, J.M.G. 1995. Semi-parametric Estimation in Failure-Time Mixture Models.Biometrics. Vol.51: 899-907




DOI: http://dx.doi.org/10.31604/eksakta.v4i1.66-72

Article Metrics

Abstract view : 1635 times
PDF (Bahasa Indonesia) - 1256 times

Refbacks

  • There are currently no refbacks.