ANALISIS KOMPARATIF LEARNING VECTOR QUANTIZATION (LVQ) DAN PARTICLE SWARM OPTIMIZATION (PSO) PADA KLASIFIKASI
Abstract
Keywords
Full Text:
PDFReferences
Al-Omari, M., AL-Betar, M. A., & Abbadi, I. M. 2018. “Comparative Study of PSO and GA for feature selection based on different classifiers”. Journal of Big Data 5.1, 1-28.
Wang, L., Liu, J., Li, H., & Yang, Y. 2018. “A feature selection method based on hybrid particle swarm optimization for classification”. Measurement 122, 196-202.
Zhao, Y., Li, X., & Huang, J. 2019. “Multi-label feature selection with class-wise constraints”. Knowledge-Based Systems 163, 274-286.
Kurniawan, R., & Chandra, F. 2020. “Hybrid Matrix Learning Vector Quantization (MLVQ) and Particle Swarm Optimization (PSO) for classifying liver disease”. International Journal of Advanced Computer Science and Applications 11.11, 35-40.
Ani, R. A. M., & Mansor, Z. 2020. “An improved particle swarm optimization for feature selection in breast cancer classification”. Journal of Ambient Intelligence and Humanized Computing, 11.8, 3283-3294.
Rahma, R., & Yunus, A. 2019. “Optimization of support vector machine parameters using particle swarm optimization in diagnosing diabetes mellitus”. Journal of Physics: Conference Series 1317.1, 012078
DOI: http://dx.doi.org/10.31604/jti.v1i1.11412
Article Metrics
Abstract view : 430 timesPDF - 189 times
Refbacks
- There are currently no refbacks.