PENERAPAN ARTIFICIAL INTELIGENCE DALAM PENGELOLAAN SUMBER DAYA MANUSA DALAM PERSPEKTIF PENINGKATAN KINERJA DAN KESEJAHTERAAN PSIKOLOGIS KARYAWAN

(1) Lanang Firmansyah Mail (Universitas Dirgantara Marsekal Suryadarma, Indonesia)
(2) * I Dewa Ketut Kerta Widana Mail (Universitas Dirgantara Marsekal Suryadarma, Indonesia)
(3) Yohanes Ferry Cahaya Mail (Universitas Dirgantara Marsekal Suryadarma, Indonesia)
*corresponding author

Abstract


Perkembangan Artificial Intelligence (AI) telah membawa perubahan signifikan dalam praktik manajemen sumber daya manusia (MSDM), khususnya dalam mendukung pengambilan keputusan dan penilaian kinerja di era transformasi digital. Penelitian ini bertujuan untuk menganalisis pengaruh penerapan Artificial Intelligence dalam manajemen sumber daya manusia terhadap kinerja dan kesejahteraan psikologis karyawan berdasarkan kajian literatur yang relevan. Metode penelitian yang digunakan adalah metode kualitatif yang dilakukan melalui penelaahan mendalam terhadap artikel ilmiah nasional dan internasional, buku teks, serta laporan organisasi internasional yang relevan dan diterbitkan dalam rentang tahun 2015–2024. Hasil kajian menunjukkan bahwa penerapan AI dalam MSDM berkontribusi positif terhadap peningkatan kinerja karyawan melalui sistem penilaian berbasis data, umpan balik real-time, serta pengelolaan pengembangan kompetensi yang lebih terarah. Penerapan AI juga memiliki implikasi terhadap kesejahteraan psikologis karyawan, baik dalam bentuk pengurangan beban kerja administratif maupun potensi munculnya kecemasan dan tekanan psikologis apabila tidak disertai dengan transparansi dan keadilan algoritmik. Oleh karena itu, penelitian ini menegaskan bahwa keberhasilan penerapan AI dalam MSDM tidak hanya bergantung pada kecanggihan teknologi, tetapi juga pada kebijakan organisasi yang berorientasi pada kesejahteraan karyawan.


Keywords


kecerdasan buatan, manajemen sumber daya manusia, kinerja karyawan, kesejahteraan psikologis, transformasi digital

   

DOI

https://doi.org/10.31604/jips.v13i2.2026.670-679
      

Article metrics

10.31604/jips.v13i2.2026.670-679 Abstract views : 0 | PDF views : 0

   

Cite

   

Full Text

Download

References


Abidin, Z., Prasetyo, E., & Nugroho, A. (2023). The role of artificial intelligence in driving human resource management and employee performance. Jurnal Ilmiah Manajemen dan Bisnis, 24(2), 145–156. https://doi.org/10.30596/jimb.v24i2.14567

Bakker, A. B., & Demerouti, E. (2023). Job demands–resources theory: Taking stock and looking forward. Journal of Occupational Health Psychology, 28(2), 123–135.

Benjamin, R. (2020). Race after technology: Abolitionist tools for the new Jim Code. Polity Press.

Bersin, J. (2018). AI in HR: Transforming the employee experience. Deloitte Insights. https://www2.deloitte.com

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101.

Brougham, D., & Haar, J. (2020). Smart technology, artificial intelligence, robotics, and algorithms (STARA): Employees’ perceptions of our future workplace. Journal of Management & Organization, 26(2), 239–257.

Brynjolfsson, E., & McAfee, A. (2017). Machine, platform, crowd: Harnessing our digital future. W. W. Norton & Company.

Califf, C. B., & Brooks, S. (2023). An empirical study of technostressors, job outcomes, and coping strategies. Computers in Human Behavior, 139, 107523.

Davenport, T. H., & Bean, R. (2020). Big data and AI for human resources: Moving to a higher level of analytics maturity. Journal of Organizational Effectiveness: People and Performance, 7(1), 3–14.

Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108–116.

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340.

Demerouti, E., Bakker, A. B., Nachreiner, F., & Schaufeli, W. B. (2001). The job demands–resources model of burnout. Journal of Applied Psychology, 86(3), 499–512.

European Commission. (2020). Ethics guidelines for trustworthy AI. https://digital-strategy.ec.europa.eu

Jarrahi, M. H., & Sutherland, W. (2022). Algorithmic management and algorithmic competencies: Understanding human–algorithm interaction in the workplace. Journal of the Association for Information Science and Technology, 73(10), 1378–1393.

Jarrahi, M. H., Newlands, G., Lee, M. K., Wolf, C. T., Kinder, E., & Sutherland, W. (2021). Algorithmic management in a work context. Big Data & Society, 8(2), 1–14.

Kaur, P., Dhir, A., Talwar, S., & Ghuman, K. (2022). The value of artificial intelligence in human resource management: A systematic literature review. Journal of Business Research, 143, 408–423. https://doi.org/10.1016/j.jbusres.2022.01.043

Kellogg, K. C., Valentine, M. A., & Christin, A. (2020). Algorithms at work: The new contested terrain of control. Academy of Management Annals, 14(1), 366–410.

Marler, J. H., & Boudreau, J. W. (2017). An evidence-based review of HR analytics. The International Journal of Human Resource Management, 28(1), 3–26.

Martin, K., Shilton, K., & Smith, J. (2021). Business and the ethical implications of technology. Journal of Business Ethics, 160(2), 307–317.

Mäntymäki, M., & Ritala, P. (2022). Managing digital transformation: Human–AI interaction and employee well-being. Technological Forecasting and Social Change, 174, 121238.

Nankervis, A., Connell, J., & Burgess, J. (2021). Human resource management, strategy and practice in the era of AI. Personnel Review, 50(6), 1476–1493.

OECD. (2021). State of implementation of the OECD AI principles. OECD Publishing.

Paschen, J., Pitt, L., & Kietzmann, J. (2020). Artificial intelligence: Building blocks and an innovation typology. Business Horizons, 63(2), 147–155.

Peraturan Presiden Republik Indonesia Nomor 95 Tahun 2018 tentang Sistem Pemerintahan Berbasis Elektronik (SPBE).

Raghavan, M., Barocas, S., Kleinberg, J., & Levy, K. (2020). Mitigating bias in algorithmic hiring. Proceedings of the ACM Conference on Fairness, Accountability, and Transparency, 469–481.

Raisch, S., & Krakowski, S. (2021). Artificial intelligence and management: The automation–augmentation paradox. Academy of Management Review, 46(1), 192–210.

Ryff, C. D. (1989). Happiness is everything, or is it? Journal of Personality and Social Psychology, 57(6), 1069–1081.

Sadeghi, A. (2024). Employee well-being in the age of artificial intelligence: Challenges and opportunities. Frontiers in Psychology, 15, 1–12.

https://doi.org/10.3389/fpsyg.2024.1298456

Sharma, A., & Bhatnagar, J. (2022). Artificial intelligence and HRM: A conceptual framework and future research agenda. Human Resource Management Review, 32(4), 100847.

Stahl, B. C., Timmermans, J., & Mittelstadt, B. (2022). The ethics of computing. ACM Computing Surveys, 54(8), 1–36.

Stone, D. L., Deadrick, D. L., Lukaszewski, K. M., & Johnson, R. (2015). The influence of technology on the future of HRM. Human Resource Management Review, 25(2), 216–231.

Tambe, P., Cappelli, P., & Yakubovich, V. (2019). Artificial intelligence in HRM: Challenges and a path forward. California Management Review, 61(4), 15–42.

Tarafdar, M., Cooper, C. L., & Stich, J. F. (2020). The technostress trifecta. Information Systems Journal, 30(1), 6–42.

Taris, T. W., Schaufeli, W. B., & De Jonge, J. (2023). Job demands–resources theory and health outcomes. Applied Psychology, 72(1), 24–56.

Tursunbayeva, A., Di Lauro, S., & Pagliari, C. (2020). People analytics. International Journal of Information Management, 52, 102065.

Vrontis, D., Christofi, M., Pereira, V., Tarba, S., Makrides, A., & Trichina, E. (2022). Artificial intelligence and HRM: A systematic review. Employee Relations, 44(5), 1237–1266.

Widana, IDKK., Prakoso, B., Sukendro, A., dan Kurniadi, A. (2022). Metodologi Penelitian : Kuantitatif, Kualitatif, dan Kombinasi. Yogyakarta: Deepublish Publisher, 112-116.

World Economic Forum. (2023). The future of jobs report 2023. https://www.weforum.org

World Health Organization. (2022). Mental health at work: Policy brief. WHO.


Refbacks

  • There are currently no refbacks.