PEMANFAATAN METODE FORWARD MODELING DENGAN FINITE DIFFERENCE PADA GROUND PENETRATING RADAR UNTUK PEMODELAN SENJATA YANG DISEMBUNYIKAN DI BAWAH PERMUKAAN

(1) * Andini Aprilia Ardhana Mail (Universitas Pertahanan Republik Indonesia, Indonesia)
(2) Sobar Sutisna Mail (Universitas Pertahanan Republik Indonesia, Indonesia)
(3) Trismadi Trismadi Mail (Universitas Pertahanan Republik Indonesia, Indonesia)
*corresponding author

Abstract


Penelitian ini mendalam tentang pemanfaatan metode Forward Modeling dengan Finite Difference pada Ground Penetrating Radar (GPR) untuk pemodelan senjata api yang terkubur di bawah permukaan tanah, dengan fokus pada konteks keamanan dan pertahanan nasional. Keberadaan senjata yang mungkin tersembunyi menjadi tantangan serius yang memerlukan perhatian intensif dalam rangka menjaga kedaulatan dan stabilitas negara. GPR diakui sebagai teknologi relevan dalam pemetaan bawah permukaan, dan penelitian ini mempertimbangkan bagaimana penerapannya dapat meningkatkan kemampuan deteksi serta identifikasi senjata yang terkubur. Melalui pendekatan kuantitatif deskriptif dan studi literatur, penelitian menguraikan langkah-langkah metodologi implementasi Forward Modeling dengan Finite Difference. Teknologi GPR, sebagai metode non-destruktif, memberikan gambaran tiga dimensi struktur bawah permukaan dengan tingkat resolusi yang tinggi. Dalam konteks pertahanan nasional, GPR bukan hanya berperan sebagai alat deteksi, tetapi juga sebagai alat pemetaan strategis yang mendukung perencanaan dan strategi pertahanan. Penelitian ini menyoroti informasi yang dihasilkan oleh GPR dan metode Forward Modeling dengan Finite Difference dalam pengembangan kebijakan pertahanan yang optimal. Sehingga, hasil penelitian diharapkan dapat memberikan kontribusi nyata dalam upaya meningkatkan efisiensi dan efektivitas perlindungan keamanan nasional dari potensi ancaman yang mungkin muncul dari bawah permukaan tanah.


Keywords


Finite Difference, Forward Modeling, Ground Penetrating Radar (GPR), Keamanan Nasional.

   

DOI

https://doi.org/10.31604/jips.v11i2.2024.712-718
      

Article metrics

10.31604/jips.v11i2.2024.712-718 Abstract views : 0 | PDF views : 0

   

Cite

   

Full Text

Download

References


Abidin, J., & Manado, U. N. (2018). Studi Awal Model Panas Bumi Dengan Menggunakan Metode Beda Hingga. Frontiers: Jurnal Sains Dan Teknologi, 1, 237–244. https://doi.org/10.36412/frontiers/001035e1/desember201801.01

Arisona, Nawawi, M., Ishola, K. S., & Safiuddin, L. O. (2017). Forward Modeling of Ground Penetrating Radar for the Reconstruction of Models Response Profiles using Synthetic Data. Journal of Geology & Geophysics, 06(03). https://doi.org/10.4172/2381-8719.1000289

Asmoro, N., Marsetio, M., Zuhdi, S., Putro, R. W., & Putri, R. (2022). Management of national security in analysis and threat assessment of Indonesian sovereignty. JPPI (Jurnal Penelitian Pendidikan Indonesia), 8(4). https://doi.org/10.29210/020221705

Bao, Y., Gao, R., Guo, D., Bai, S., & Xin, X. (2015). Forward modelling and detection of GPR in urban road base disease. Chemical Engineering Transactions, 46, 445–450. https://doi.org/10.3303/CET1546075

Chew, W. C. (2020). Lectures on Electromagnetic Theory. In Lecture Note Book. Purdue University. https://engineering.purdue.edu/wcchew/ece604f20/EMFTAll.pdf

Elfarabi, E., Widodo, A., & Syaifudin, F. (2017). Pemetaan Bawah Permukaan Pada Daerah Tanggulangin, Sidoarjo Dengan Menggunakan Metoda Ground Penetrating Radar (GPR). Jurnal Geosaintek, 3(1), 45. https://doi.org/10.12962/j25023659.v3i1.2955

Feng, J., Yang, L., Hoxha, E., & Xiao, J. (2023). Improving 3D Metric GPR Imaging Using Automated Data Collection and Learning-Based Processing. IEEE Sensors Journal, 23(5). https://doi.org/10.1109/JSEN.2022.3164707

Gao, X., Podd, F. J. W., Van Verre, W., Daniels, D. J., Tan, Y. M., & Peyton, A. J. (2018). Simulation of Ground Penetrating Radar for Anti-personnel Landmine Detection. 2018 17th International Conference on Ground Penetrating Radar, GPR 2018.https://doi.org/10.1109/ICGPR.2018.8441564

García-Fernández, M., Ãlvarez-Narciandi, G., Ãlvarez López, Y., & Las-Heras Andrés, F. (2022). Improvements in GPR-SAR imaging focusing and detection capabilities of UAV-mounted GPR systems. ISPRS Journal of Photogrammetry and Remote Sensing, 189. https://doi.org/10.1016/j.isprsjprs.2022.04.014

Hermawan, W., & Ruchimat, A. (2019). Pemodelan Ground Penetrating Radar menggunakan Split Step dan Finite Difference Time Domain (FDTD) Modelling pada Saluran Air Sungai Cikapayang Ground. Ground Penetrating Radar, 10(Jurnal Lingkungan dan Bencana Geologi), 29–37.

Iqbal, I., Xiong, B., Tian, G., Ali, A., Peng, S., Wen, G., Huang, X., Anees, A., Ashraf, U., & Abd El-Raouf, A. (2022). Analysis of 2D and 3D GPR data interpretation using continuous wavelet transforms: Case study from an archaeological test site. Frontiers in Earth Science, 10(September), 1–17. https://doi.org/10.3389/feart.2022.1008757

Jazayeri, S., Klotzsche, A., & Kruse, S. (2018). Improving estimates of buried pipe diameter and infilling material from ground-penetrating radar profiles with full-waveform inversion. Geophysics, 83(4), H27–H41. https://doi.org/10.1190/geo2017-0617.1

John M. Reynolds. (2011). An Introduction to Applied and Environmental Geophysics. In European Space Agency, (Special Publication) ESA SP (2nd ed., Issue 606). John Wiley & Sons, Ltd. https://www.pdfdrive.com/an-introduction-to-applied-and-environmental-geophysics-d175302156.html

Kelly, T. B., Angel, M. N., O’Connor, D. E., Huff, C. C., Morris, L. E., & Wach, G. D. (2021). A novel approach to 3D modelling ground-penetrating radar (GPR) data – A case study of a cemetery and applications for criminal investigation. Forensic Science International, 325, 110882. https://doi.org/10.1016/j.forsciint.2021.110882

Lai, W. W. L., Chang, R. K. W., Völker, C., & Cheung, B. W. Y. (2021). GPR wave dispersion for material characterization. Construction and Building Materials, 282. https://doi.org/10.1016/j.conbuildmat.2021.122597

Li, N., Wu, R., Li, H., Wang, H., Gui, Z., & Song, D. (2022). MV-GPRNet: Multi-View Subsurface Defect Detection Network for Airport Runway Inspection Based on GPR. Remote Sensing, 14(18), 1–20. https://doi.org/10.3390/rs14184472

Li, Y., Wang, N., Lei, J., Wang, F., & Li, C. (2022). Modeling GPR Wave Propagation in Complex Underground Structures Using Conformal ADI-FDTD Algorithm. Applied Sciences (Switzerland), 12(10). https://doi.org/10.3390/app12105219

Liu, H., Lu, H., Lin, J., Han, F., Liu, C., Cui, J., & Spencer, B. F. (2021). Penetration Properties of Ground Penetrating Radar Waves through Rebar Grids. IEEE Geoscience and Remote Sensing Letters, 18(7). https://doi.org/10.1109/LGRS.2020.2995670

Luga, A., Ivansyah, O., & Muliiadi. (2019). Identifikasi Pipa Metal Bawah Permukaan Menggunakan Metode Ground Penetrating Radar (GPR). PRISMA FISIKA, 7(1).

Malof, J. M., Reichman, D., Karem, A., Frigui, H., Ho, K. C., Wilson, J. N., Lee, W. H., Cummings, W. J., & Collins, L. M. (2019). A large-scale multi-institutional evaluation of advanced discrimination algorithms for buried threat detection in ground penetrating radar. IEEE Transactions on Geoscience and Remote Sensing, 57(9). https://doi.org/10.1109/TGRS.2019.2909665

Marsh, L. A., van Verre, W., Davidson, J. L., Gao, X., Podd, F. J. W., Daniels, D. J., & Peyton, A. J. (2019). Combining electromagnetic spectroscopy and ground-penetrating radar for the detection of anti-personnel landmines. Sensors (Switzerland), 19(15). https://doi.org/10.3390/s19153390

Mawalid, A. (2020). PENINGKATAN KUALITAS PENGOLAHAN DATA GROUND PENETRATING RADAR (GPR) MELALUI STUDI PEMODELAN KEDEPAN. Jurnal Geofisika, 76. https://library.universitaspertamina.ac.id//xmlui/handle/123456789/1310

Melor, C. K. N. A. H. C. K., Joret, A., Ponniran, A., Sulong, M. S., Omar, R., & Razali, M. (2021). Signal processing technique for pulse modulation (pm) ground penetrating radar (gpr) system based on phase and envelope detector technique. Lecture Notes in Electrical Engineering, 666. https://doi.org/10.1007/978-981-15-5281-6_46

Meşecan, İ., Ömür Bucak, İ., & Çiço, B. (2018). Comparison of histograms of oriented gradients (HOG) and n-Row average subtraction (nRAS) using GprMax. Microprocessors and Microsystems, 63. https://doi.org/10.1016/j.micpro.2018.08.011

Putra, A. S., Alam, I. S., Sukono, Srigutomo, W., & Bon, A. T. (2019). Numerical simulation of finite difference Time Domain (FDTD) for solving the boundary value problem (BVP) in Earth Layer. Proceedings of the International Conference on Industrial Engineering and Operations Management, 2019(MAR).

Szynkarczyk, P., Wrona, J., Pasternak, M., Rubiec, A., & Serafin, P. (2021). Unmanned Ground Vehicle Equipped with Ground Penetrating Radar for Improvised Explosives Detection. Journal of Automation, Mobile Robotics and Intelligent Systems, 15(2), 20–31. https://doi.org/10.14313/JAMRIS/2-2021/10

Taflove, A., Hagness, S. C., & Piket-May, M. (2005). Computational Electromagnetics: The Finite-Difference Time-Domain Method. In The Electrical Engineering Handbook. University of Southern Queensland Faculty of Engineering and Surveying. https://doi.org/10.1016/B978-012170960-0/50046-3

Tanoli, W. A., Sharafat, A., Park, J., & Seo, J. W. (2019). Damage Prevention for underground utilities using machine guidance. Automation in Construction, 107. https://doi.org/10.1016/j.autcon.2019.102893

Wu, S., Wang, L., Zeng, X., Wang, F., Liang, Z., & Ye, H. (2022). UAV-Mounted GPR for Object Detection Based on Cross-Correlation Background Subtraction Method. Remote Sensing, 14(20). https://doi.org/10.3390/rs14205132

Zhu, C., & Ye, H. (2023). A Modular Method for GPR Hyperbolic Feature Detection and Quantitative Parameter Inversion of Underground Pipelines. Remote Sensing, 15(8). https://doi.org/10.3390/rs15082114


Refbacks

  • There are currently no refbacks.