PREDIKSI KUAT TEKAN BATU BATA MENGGUNAKAN ALGORITMA MACHINE LEARNING BERBASIS DATA PRODUKSI

(1) * Rini Anggraini Pakpahan Mail (Universitas Graha Nusantara Padangsidimpuan, Indonesia)
(2) Sri Utami Kholila Mora Siregar Mail (Universitas Graha Nusantara Padangsidimpuan, Indonesia)
(3) Suryanti Suraja Pulungan Mail (Universitas Graha Nusantara Padangsidimpuan, Indonesia)
*corresponding author

Abstract


Clay bricks are a very popular building material used in projects in Indonesia, with compressive strength as a key quality indicator. Laboratory compressive strength testing is destructive, time-consuming, and less practical for small and medium-scale industries. The study seeks to create a compressive strength predictive model utilizing production statistics and advanced machine learning algorithms and to compare manually molded and pressed bricks. The dataset consists of secondary production data, including clay composition, moisture content, molding pressure, firing temperature, and firing time, with compressive strength as the output variable. Three algorithms were applied: Linear Regression, Support Vector Regression, and Random Forest Regression. To assess model performance, utilized the coefficient of determination (R²), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE). Study outcomes reveal that Random Forest Regression achieves the best performance, with an R² value of 0.89 and the lowest prediction errors. Results from the feature importance analysis demonstrate that molding pressure and firing time are the most influential factors affecting compressive strength. The predicted results are consistent with previous experimental studies reporting higher and more stable compressive strength in pressed bricks compared to manually molded bricks. This approach demonstrates strong potential as a data-driven decision-support tool for brick quality control.

Keywords


machine learning, kuat tekan, batu bata, data produksi

   

DOI

https://doi.org/10.31604/eksakta.v11i1.%25p
      

Article metrics

10.31604/eksakta.v11i1.%p Abstract views : 0 | PDF views : 0

   

Cite

   

Full Text

Download

References


S. Frapanti, R. Efrida, I. Dewi, S. Asfiati, and F. V. Riza, “Analisis Standar Mutu Batu Bata Merah Tradisional Di Deli Serdang Dengan Indikator SNI 15-2094-2000,” Teras Jurnal : Jurnal Teknik Sipil, vol. 13, no. 1, pp. 163–172, Mar. 2023, doi: 10.29103/tj.v13i1.852.

S. Salsabilla, E. R. Syahputra, and F. R. Lubis, “IMPLEMENTASI METODE MABAC DALAM MENENTUKAN KUALITAS BATU BATA TERBAIK,” CompTech : Jurnal Ilmu Komputer dan Teknologi, vol. 1, no. 1, pp. 40–50, Sep. 2024, doi: 10.63854/COMPTECH.V1I1.18.

M. Huda and E. Hastuti, “PENGARUH TEMPERATUR PEMBAKARAN DAN PENAMBAHAN ABU TERHADAP KUALITAS BATU BATA.”

B. H. Subagio, A. Lesmawanto, A. Iqbal, and H. Nasrullah, “PENERAPAN MESIN PENCETAK BATU BATA OTOMATIS UNTUK PENINGKATAN PRODUKTIVITAS PENGRAJIN TRADISIONAL,” 108 JP2T, vol. 6, no. 2, p. 2025.

F. M. Surur et al., “Unlocking the power of machine learning in big data: a scoping survey,” Data Science and Management, Dec. 2025, doi: 10.1016/j.dsm.2025.02.004.

J. Pingki Cancerio, I. Puspa Wangi, P. Studi Teknologi Rekayasa Konstruksi Bangunan Gedung, F. Teknik, U. Negeri Jakarta, and B. Bata Abu Sekam Padi Kuat Tekan, “Jurnal Teslink : Teknik Sipil dan Lingkungan Pengaruh Penambahan Abu Sekam Padi Sebagai Campuran Terhadap Kekuatan Batu Bata (Literature Review) KATA KUNCI,” vol. 6, no. 1, pp. 50–53, 2024, doi: 10.52005/teslink.v115i1.xxx.

Apriansyah, Abdul Hasim, Aji Marwadi, and Natser Istiqlal Chalid, “Studi Eksperimental Kuat Tekan Bata Merah dengan Variasi Penambahan Abu Sekam Padi,” Jurnal Riset & Teknologi Terapan Kemaritiman, vol. 1, no. 2, pp. 1–12, Dec. 2022, doi: 10.25042/jrt2k.122022.01.

M. Priyadarshini, J. P. Giri, and M. Patnaik, “Variability in the compressive strength of non-conventional bricks containing agro and industrial waste,” Case Studies in Construction Materials, vol. 14, Jun. 2021, doi: 10.1016/j.cscm.2021.e00506.

X. Yang et al., “Research and applications of artificial neural network in pavement engineering: A state-of-the-art review,” Dec. 01, 2021, Chang’an University. doi: 10.1016/j.jtte.2021.03.005.

A. Kurani, P. Doshi, A. Vakharia, and M. Shah, “A Comprehensive Comparative Study of Artificial Neural Network (ANN) and Support Vector Machines (SVM) on Stock Forecasting,” Annals of Data Science 2021 10:1, vol. 10, no. 1, pp. 183–208, Jun. 2021, doi: 10.1007/S40745-021-00344-X.

J. P. Pasaribu, Z. Indra, A. Idrus, H. Nasution, and D. Yandra Niksa, “STUDI KOMPARATIF: EVALUASI PERFORMA ALGORITMA ARTIFICIAL NEURAL NETWORK DENGAN ALGORITMA MACHINE LEARNING DALAM KLASIFIKASI PENYAKIT DIABETES,” 2025.

D. Leni, Y. P. kusuma, R. Sumiati, . M., and . A., “Perbandingan Alogaritma Machine Learning Untuk Prediksi Sifat Mekanik Pada Baja Paduan Rendah,” Jurnal Rekayasa Material, Manufaktur dan Energi, vol. 5, no. 2, pp. 167–174, Sep. 2022, Accessed: Jan. 12, 2026. [Online]. Available: https://jurnal.umsu.ac.id/index.php/RMME/article/view/11407

F. Kibrete, T. Trzepieci?ski, H. S. Gebremedhen, and D. E. Woldemichael, “Artificial Intelligence in Predicting Mechanical Properties of Composite Materials,” Sep. 01, 2023, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/jcs7090364.

M. Alwy Yusuf et al., “Analisis Regresi Linier Sederhana dan Berganda Beserta Penerapannya,” Journal on Education, vol. 06, no. 02, 2024.

N. P. S. YULI ARTINI, I. W. SUMARJAYA, and D. P. E. NILAKUSMAWATI, “PENERAPAN METODE SUPPORT VECTOR REGRESSION (SVR) DENGAN ALGORITMA GRID SEARCH DALAM PERAMALAN HARGA SAHAM,” E-Jurnal Matematika, vol. 13, no. 2, p. 94, May 2024, doi: 10.24843/mtk.2024.v13.i02.p447.

C. V. Angkoso, K. Asror, A. Kusumaningsih, A. K. Nugroho, and P. Korespondensi, “OPTIMASI ALGORITMA SUPPORT VECTOR MACHINE BERBASIS KERNEL RADIAL BASIS FUNCTION (RBF) MENGGUNAKAN METODE PARTICLE SWARM OPTIMIZATION UNTUK ANALISIS SENTIMEN,” vol. 12, no. 3, pp. 2355–7699, 2025.

Z. Sun, G. Wang, P. Li, H. Wang, M. Zhang, and X. Liang, “An improved random forest based on the classification accuracy and correlation measurement of decision trees,” Expert Syst Appl, vol. 237, p. 121549, Mar. 2024, doi: 10.1016/J.ESWA.2023.121549.

R. Hidayat et al., “Implementasi Algoritma Random Forest Regression Untuk Memprediksi Penjualan Produksi di Supermarket,” SIMKOM, vol. 10, no. 1, pp. 101–109, Jan. 2025, doi: 10.51717/simkom.v10i1.703.

T. O. Hodson, “Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not,” Jul. 19, 2022, Copernicus GmbH. doi: 10.5194/gmd-15-5481-2022.

Y. Miao and Y. Xu, “Random Forest-Based Analysis of Variability in Feature Impacts,” 2024 IEEE 2nd International Conference on Image Processing and Computer Applications, ICIPCA 2024, pp. 1130–1135, 2024, doi: 10.1109/ICIPCA61593.2024.10708791.

N. P. Nur Fauzi, S. Khomsah, and A. D. Putra Wicaksono, “Penerapan Feature Engineering dan Hyperparameter Tuning untuk Meningkatkan Akurasi Model Random Forest pada Klasifikasi Risiko Kredit,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 12, no. 2, pp. 251–262, Apr. 2025, doi: 10.25126/jtiik.2025128472.

I. Maulita and A. M. Wahid, “Prediksi Magnitudo Gempa Menggunakan Random Forest, Support Vector Regression, XGBoost, LightGBM, dan Multi-Layer Perceptron Berdasarkan Data Kedalaman dan Geolokasi,” Jurnal Pendidikan dan Teknologi Indonesia, vol. 4, no. 5, pp. 221–232, Dec. 2024, doi: 10.52436/1.jpti.470.

H. Prayuda, E. A. Setyawan, and F. Saleh, “ANALISIS SIFAT FISIK DAN MEKANIK BATU BATA MERAH DI YOGYAKARTA (Analysis Physical and mechanical attributes of masonry in Yogyakarta),” Jurnal Riset Rekayasa Sipil, vol. 1, no. 2, 2018.

P. T and B. A. R. A. Rauf, “Analisis kuat tekan dan penyerapan air batu bata ditinjau dari berbagai lama pembakaran,” INOTEKS: Jurnal Inovasi Ilmu Pengetahuan,Teknologi, dan Seni, vol. 27, no. 1, Feb. 2023, doi: 10.21831/INO.V27I1.44192.

R. M. Sagala, “Peningkatan Suhu Pembakaran Batu Bata Dengan Memanfaatkan Abu Kulit cacao (Theobroma cacao L.),” UIN Sumatera Utara, Indonesia, 2022.


Refbacks

  • There are currently no refbacks.