PROSES BERPIKIR ALJABAR DALAM MENYELESAIKAN MASALAH MATEMATIKA BERBASIS OPEN-ENDED

Siti Nurcholifah, Riawan Yudi Purwoko, Heru Kurniawan

Abstract


This study aims to describe the algebraic thinking process of students in solving open-ended mathematical problems. The research method used was literature review through books, journals, and similar previous research. The results of the study of various literature are that there are three processes in thinking algebra when students are faced with open-ended based problems including understanding patterns, representing, and solving. In the first stage is,  understanding patterns students understand the patterns shown by writing important statements in the problem or stating the patterns in the form of images. At the stage of representing students doing symbolic manipulation of patterns in the form of equations containing coefficients, variables, and constants. At the stage of completing students use the right strategy so that a variety of alternative answers correct. Open-ended can be seen when students go through the stages of understanding patterns and completing.


Keywords


algebraic thinking, algebraic thought processes, open-ended problems

Full Text:

PDF

References


Andriani, P. 2015. Penalaran Aljbara dalam Pembelajaran Matematika. Beta-Scandinavian Journal of Business Research. https://doi.org/10.20414/beta.v8i1.567

Blanton, M. L., & Kaput, J. J. 2005. Characterizing A Classroom Practice That Promotes Algebraic Reasoning. Journal for Research in Mathematics Education, 412-446.

Blanton,M. L., dkk. 2011. Developing Essential Understanding of Algebraic Thinking for Teaching Mathematics in Grades 3-5. National Council of Teacher of Mathematics: Reston, VA.

Booker, G., 2009. Algebraic Thinking: Generalising Number and Geometry to Express Patterns and Properties Succinetly. Griffith University, Brisbane.

Cahyaningtyas, dkk. 2018. Analisis Proses Berpikir Aljabar. Jurnal Pendidikan Matematika dan Sains, 50-60.

Cusi, dkk. 2011. Theoritical issues and Educational Strategies for Encouraging Teachers to Promote A linguistic and Metacognitive Approach to Early Algebra. New York: Springer

Dindyal, J. 2011. Algebraic Thinking in Geometry at High School Level Students Use of Variables and Unknown. National Institute of Education Singapore.

Drijvers, P., dkk. 2011. Algebra Education Exploring. 5-6.

Driscoll, J., dkk. 2003. The Fostering Algebraic Thinking Toolkit: A Guide for Staff Development.

Fatah, A., dkk. 2016. Open-ended Approach: An EFFORT IN Cultivating Students Mathematical Creative Thinking Ability and Self-esteem in Mathematics. Journal on Mathematics Education. https://doi.org/10.22342/jme.7.1.2813.9-18

Hamdani,A. s. 2007. Pengembangan Kreativitas Siswa Melalui Pembelajaran Matematika dengan Masalah Terbuka ( open-ended roblem). Didaktis.

Harususilo, Y. E. 2019. “ Skor PISA Terbaru Indonesia”. https://edukasi.kompas.com/read/2019/12/04/13002801/skor-pisa-terbaru-indonesia-ini-5-pr-besar-pendidikan-pada-era-nadiem-makarim?page=all. Diakses pada tanggal 5 Oktober 2019.

Kamol, dkk. 2003. A Framework in Characterizing Lower Secondary School Students Algebraic Thinking. Diproleh dari https://pipl.com/directory/name/Kamol/180/

Kaput, J. J. 2008. What is Algebra? What is Algebra Reasoning?. Algebra in the Early grades. New York: Lawrence Erlbaum Associates.

Kieran, C. 2004. Algebraic Thinking in the Early Grades: What is it?. The Mathematics Editor.

Lepak, J. R., dkk. 2028. Capturing and Characterizing Students Strategic Algebraic Reasoning Through Cognitively Demanding Tasks with Focus on Representations. The Journal of Mathematical Behaviour. https://doi.org/https://doi.org/10.1016/j.jmathb. 2018.01.003.

Lingga, A., & Sari, W. 2013. Pengaruh Berpikir Aljabar Terhadap Kemampuan Pemecahan Masalah Matematika (Studi Kasus di Kelas VIII SMP Negeri 1 Kaliwedi Kabupaten Cirebon. Eduma.

Linsell, dkk. 2007. Early Algebraic Thinking: Links to Numeracy. Paper dipublikasikan di www.tlri.org.nz.

Mathematics, R., dkk. 2013. Untuk Mengembangkan Kemampuan Berpikir.

Maulana, U. I. N., dkk. 2008. Teori Aljabar Al-Khawarismi.

Nacional Council of Teacher of Mathematics (NCTM). 2000. Principles and Standars for School Mathematics. USA: NCTM.

Nacional Council of Teacher of Mathematics (NCTM). 2008. Principles and Standars for School Mathematics. Reston, VA: NCTM.

Napfiah, S. 2016. Berpikir Aljabar Mahasiswa dalam Menyelesaikan Masalah Berdasarkan Taksonomi SOLO Ditinjau dari Kemampuan Matematika. KALAMATIKA Jurnal Pendidikan Matematika.https;//doi.org/10.22236/kalamatika.vol1no2.2016pp171-182.

Radford, L. 2015. Early Algebraic Thiking: Epistemological, Semiotic, and Developmental Issues. In The Proceedings of the 12th International Congress on Mathematical Education. https://doi.org/10.1007/978-3-319.

Russel, S. J., dkk. 2011. Connecting Arithmetic to Algebra. Portmouth, NH: Heinemann.

Setiawan, R. H & Harrta, I. 2014. Pengaruh Pendekatan Open-ended dann Pendekatan Kontekstual terhadap Kemampuan Pemecahan Masalah dan Sikap Siswa terhadap Matematika. Jurnal Riset Pendidikan Matematika. https://doi.org/10.21831/jrpm.vli2.2679

Shaleh, A. dkk. 2004. Psikologis Suatu Pengantar dalm Perspektif Islam. Jakarta: Prenada Media.

Solso, R. L. 1995. Cognitive Psychology. Boston: Allyn and Bacon.

Subanji. 2007. Proses Berpikir Kovariasional Pseudo dalam Mengontruksi Grafik Fungsi Kejadian Dinamika Berkebalikan. Disertasi tidak diterbitkan.Surabaya: PPS UNESA.

Sukmawati, A. 2015. Berpikir Aljabar dalam Menyelesaikan Masalah Matematika

Van De Walle, J. A., dkk. 2013. Elementary and Middle School Mathematics: Teaching Developmentally. Upper Saddle River: Pearson.




DOI: http://dx.doi.org/10.31604/eksakta.v6i1.19-28

Article Metrics

Abstract view : 1204 times
PDF - 969 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.