ANALISIS TEORI PERMINTAAN DALAM STUDI EMPIRIS PADA PENETAPAN HARGA DAN KUANTITAS PRODUK DI PASAR INDONESIA

(1) * Utami Handayani Mail (Universitas Sumatera Utara, Indonesia)
(2) Irsad Lubis Mail (Universitas Sumatera Utara, Indonesia)
*corresponding author

Abstract


Penelitian ini bertujuan untuk menganalisis pengaruh GNI (Pendapatan Nasional Bruto), IHK (Indeks Harga Konsumen), dan POPULASI terhadap jumlah produk (JLH_PRODUK) di Indonesia menggunakan model regresi linier. Hasil menunjukkan bahwa GNI memiliki hubungan yang signifikan dan positif dengan jumlah produk, menandakan bahwa peningkatan pendapatan nasional dapat mendorong peningkatan produksi di pasar. Sementara itu, IHK dan populasi tidak menunjukkan pengaruh yang signifikan terhadap jumlah produk, meskipun keduanya menunjukkan arah koefisien yang positif. Model regresi linier yang digunakan memiliki kesesuaian yang sangat baik dengan data, dengan nilai R-squared yang tinggi, yang menunjukkan bahwa model ini mampu menjelaskan sebagian besar variasi dalam jumlah produk. Namun penelitian ini juga memiliki keterbatasan, termasuk asumsi linearitas dan potensi multikolinearitas antarvariabel independen yang dapat mempengaruhi stabilitas hasil. Temuan ini memberikan kontribusi bagi literatur ekonomi dengan menunjukkan peran penting GNI dalam produksi, serta menyarankan perlunya penelitian lebih lanjut dengan metode yang lebih kompleks dan sampel lebih lanjut yang lebih besar untuk meningkatkan validitas hasil.

Keywords


GNI; IHK; Populasi; Regresi linier; Produksi Indonesia

   

DOI

https://doi.org/10.31604/jips.v12i1.2025.365-373
      

Article metrics

10.31604/jips.v12i1.2025.365-373 Abstract views : 0

   

Cite

   

References


Abdelwahed, Z. (2023). Clinico-epidemiological study of pancreatic, gall bladder and biliary tract cancers at clinical oncology department tanta university hospitals. International Journal of Cancer and Biomedical Research, 7(3), 85-95. https://doi.org/10.21608/jcbr.2023.220856.1307

Adner, R. and Levinthal, D. (2001). Demand heterogeneity and technology evolution: implications for product and process innovation. Management Science, 47(5), 611-628. https://doi.org/10.1287/mnsc.47.5.611.10482

Akinshin, A. (2022). Finite-sample bias-correction factors for the median absolute deviation based on the harrell-davis quantile estimator and its trimmed modification.. https://doi.org/10.48550/arxiv.2207.12005

Ali, G., Rafiq, S., & Javed, A. (2020). Nexus between consumer welfare and marshalian’s demand function; evidence from pakistan. Pakistan Journal of Humanities and Social Sciences Research, 3(01), 101-114. https://doi.org/10.37605/pjhssr.3.1.9

Chowdhury, S., Lin, Y., Liaw, B., & Kerby, L. (2021). Evaluation of tree based regression over multiple linear regression for non-normally distributed data in battery performance. https://doi.org/10.48550/arxiv.2111.02513

Cuellar, S., Colgan, T., Hunnicutt, H., & Ransom, G. (2010). The demand for wine in the usa. International Journal of Wine Business Research, 22(2), 178-190. https://doi.org/10.1108/17511061011061739

Dwikasari, N. (2023). Medical costs estimation using linear regression method. Jurnal Ilmiah Merpati (Menara Penelitian Akademika Teknologi Informasi), 11(3), 171. https://doi.org/10.24843/jim.2023.v11.i03.p03

Fitrianto, A., Mah, S. M., & Mah, S. H. (2022). Statistical model for IC50 determination of acetylcholinesterase enzyme for Alzheimer’s disease. International Journal of Public Health, 11(3), 770-778.

Green, C., Carey, G., & Joyce, A. (2022). Application of theories of the policy process in research on consumption of sustainable diets: a systematic review. BMC Public Health, 22(1). https://doi.org/10.1186/s12889-022-13717-5

Gulliver, R., Fahmi, M., & Abramson, D. (2020). Technical considerations when implementing digital infrastructure for social policy. Australian Journal of Social Issues, 56(2), 269-287. https://doi.org/10.1002/ajs4.135

Gupta, A. and Singhal, D. (2019). Global median filtering forensic method based on pearson parameter statistics. Iet Image Processing, 13(12), 2045-2057. https://doi.org/10.1049/iet-ipr.2018.6074

Han, X., Zheng, W., Chen, H., Zhang, B., Li, Y., & Du, T. (2021). Inversion of winter wheat growth parameters and yield under different water treatments based on uav multispectral remote sensing. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.609876

Harefa, A., Zega, Y., & Mendrofa, R. (2023). The application of the least squares method to multicollinear data. International Journal of Mathematics and Statistics Studies, 11(1), 30-39. https://doi.org/10.37745/ijmss.13/vol11n13039

Hu, Z. and Nasiry, J. (2018). Are markets with loss-averse consumers more sensitive to losses?. Management Science, 64(3), 1384-1395. https://doi.org/10.1287/mnsc.2016.2678

Kocabıyıkoğlu, A., Göğüş, C., & Gönül, M. (2015). Decision making and the price setting newsvendor: experimental evidence. Decision Sciences, 47(1), 157-186. https://doi.org/10.1111/deci.12158

Mishra, P., Pandey, C., Singh, U., Keshri, A., & Mayilvaganan, S. (2019). Selection of appropriate statistical methods for data analysis. Annals of Cardiac Anaesthesia, 22(3), 297. https://doi.org/10.4103/aca.aca_248_18

Ng, S., Chew, Y., Ch’ng, P., & Ng, K. (2018). An insight of linear regression analysis. Scientific Research Journal, 15(2), 1. https://doi.org/10.24191/srj.v15i2.9347

Nunes, H., Alves, C., Gonçalves, E., & Silva, D. (2017). What physical fitness component is most closely associated with adolescents' blood pressure?. Perceptual and Motor Skills, 124(6), 1107-1120. https://doi.org/10.1177/0031512517730414

Özdamar, Ö. and Erciyas, O. (2019). Turkey and cyprus: a poliheuristic analysis of decisions during the crises of 1964, 1967, and 1974. Foreign Policy Analysis, 16(3), 457-477. https://doi.org/10.1093/fpa/orz016

Pasaribu, V., Septiani, F., Rahayu, S., Lismiatun, L., Arief, M., Juanda, A., & Rahim, R. (2021). Forecast analysis of gross regional domestic product based on the linear regression algorithm technique. Tem Journal, 620-626. https://doi.org/10.18421/tem102-17

Rady, E. and El-Sheikh, A. (2021). The distribution of the coefficient of determination in linear regression model: a review. Journal of University of Shanghai for Science and Technology, 23(09), 126-127. https://doi.org/10.51201/jusst/21/08481

Redd, S. (2005). The influence of advisers and decision strategies on foreign policy choices: president clinton's decision to use force in kosovo. International Studies Perspectives, 6(1), 129-150. https://doi.org/10.1111/j.1528-3577.2005.00198.x

Warha, A., Muhammad, Y., & Akeyede, I. (2018). A comparative analysis on some estimators of parameters of linear regression models in presence of multicollinearity. Asian Journal of Probability and Statistics, 1-8. https://doi.org/10.9734/ajpas/2018/v2i228773

Yin, Y. (2020). Model-free tests for series correlation in multivariate linear regression. Journal of Statistical Planning and Inference, 206, 179-195. https://doi.org/10.1016/j.jspi.2019.09.011


Refbacks

  • There are currently no refbacks.