<u>p-ISSN: 2598-1218</u> Volume 8 Nomor 11 Tahun 2025 <u>e-ISSN: 2598-1226</u> DOI : 10.31604/jpm.v8i11.4288-4301

PROGRAM PERBAIKAN SARANA PRODUKSI: USULAN RAK PENDINGIN TAHU UNTUK MENJAGA MUTU DAN KEBERSIHAN PRODUK

Lobes Herdiman, Ilham Priadythama, Susy Susmartini, Taufiq Rochman, R Hari Setyanto

Teknik Industri, Fakultas Teknik, Universitas Sebelas Maret lobesherdiman@staff.uns.ac.id

Abstract

The Sari Murni Tofu Small and Medium-sized Enterprise (SME) in Mojosongo, Surakarta, owned by Mr. Aco Sudarso, faces significant challenges in its post-pressing tofu cooling process. Placing tofu directly on tables or the floor causes the production area to become cramped, hinders the workflow, reduces product quality due to compression, and increases the risk of injury for workers due to non-ergonomic postures. To address this issue, a community service program designed a more functional tofu cooling rack. The design was developed using an engineering design approach, which included observation, interviews, and modeling with Autodesk Inventor software. The result is a proposed design for a vertical, cylinder-shaped rack with a spiral, tiered shelving system. This design effectively utilizes vertical space and uses perforated material to maintain product hygiene by draining excess water. The rack is designed to optimize the production flow and improve worker comfort and safety. Through the implementation of this solution, it is expected that the Pak Aco Tofu SME can increase productivity, maintain the quality and hygiene of its tofu, and create a safer and more ergonomic work environment for its employees.

Keywords: Cooling Rack, Tofu Production, SME, Ergonomics, Product Quality.

Abstrak

UKM Tahu Sari Murni di Mojosongo, Surakarta, milik Bapak Aco Sudarso, menghadapi kendala serius dalam proses pendinginan tahu pasca-pengepresan. Tahu yang diletakkan langsung di meja atau lantai menyebabkan ruang produksi menjadi sempit, alur kerja terhambat, kualitas produk menurun akibat tertindih, serta meningkatkan risiko cedera pada pekerja karena postur yang tidak ergonomis. Untuk mengatasi masalah ini, sebuah program pengabdian merancang rak pendingin tahu yang lebih fungsional. Perancangan dilakukan melalui pendekatan rekayasa desain, yang meliputi observasi, wawancara, dan pemodelan menggunakan perangkat lunak Autodesk Inventor. Hasilnya adalah sebuah usulan desain rak vertikal berbentuk silinder dengan sistem rak bertingkat yang disusun spiral. Desain ini secara efektif memanfaatkan ruang ke atas dan menggunakan material berlubang untuk menjaga kebersihan produk dengan mengalirkan sisa air. Rak ini dirancang untuk mengoptimalkan alur produksi dan meningkatkan kenyamanan serta keselamatan kerja. Dengan penerapan solusi ini, diharapkan UKM Tahu Pak Aco dapat meningkatkan produktivitas, menjaga mutu serta kebersihan tahu, dan menciptakan lingkungan kerja yang lebih aman dan ergonomis bagi para pekerjanya.

Keywords: Rak Pendingin, Produksi Tahu, UKM, Ergonomi, Mutu Produk.

PENDAHULUAN

Industri pengolahan tahu adalah pilar penting dalam sektor pangan di

Indonesia, yang didominasi oleh Usaha Kecil Menengah (UKM). Tahu, sebagai produk turunan kedelai, telah lama menjadi sumber protein nabati

MARTABE: Jurnal Pengabdian Masyarakat | 4288

yang terjangkau dan digemari oleh berbagai lapisan masyarakat. UKM di sektor ini tidak hanya memenuhi kebutuhan gizi, tetapi juga memainkan peran vital dalam menggerakkan roda perekonomian lokal melalui penyerapan tenaga kerja setempat dan penciptaan nilai tambah (Munthe dkk., 2023; Renate dkk, 2025). Mengingat peningkatan perannya strategis, kapasitas dan kualitas produksi pada UKM tahu menjadi penting dan strategis dalam mendukung ketahanan pangan nasional dan kesejahteraan masyarakat.

Meskipun demikian, mayoritas pengolahan UKM tahu masih menghadapi tantangan fundamental dalam operasional. Banyak antaranya masih menjalankan proses produksi secara konvensional dengan teknologi seadanya dan fasilitas Kondisi seperlunya. ini sebagai penyebab sulitnya penerapan standar produksi yang baik, seperti Good Manufacturing Practices (GMP), yang krusial untuk menjamin mutu dan keamanan produk (Rostwentivaivi & Fizriani, 2019; Dwikai dkk., 2024). Kondisi ini menunjukkan kebutuhan mendesak untuk intervensi melalui program pengabdian masyarakat yang dapat memperkenalkan perbaikan, baik dari sisi teknologi maupun manajemen (Suprapto dkk., produksi 2025). Tantangan dalam adopsi teknologi dan inovasi menjadi faktor penghambat bagi UKM lokal berkembang dan bersaing di pasar yang semakin kompetitif (Sitompul dkk., 2025).

Satu diantara beberapa UKM yang merepresentasikan kondisi ini adalah Pabrik Tahu Sari Murni milik Bapak Aco Sudarso, berlokasi di Kampung Krajan, Mojosongo, Surakarta. Usaha yang telah beroperasi sejak tahun 1984 ini sepenuhnya

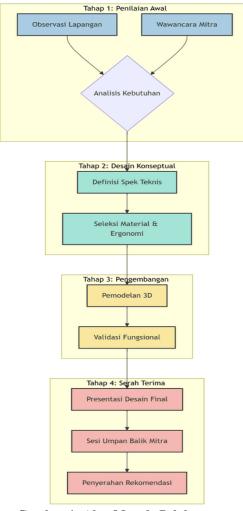
mengandalkan proses manual dengan peralatan sederhana untuk mengolah sekitar 128 kg kedelai setiap hari. Memperkerjakan sepuluh orang karyawan, pabrik ini menjadi bagian pemasok tahu utama bagi pasar-pasar tradisional di lingkungan sekitarnya, menunjukkan eksistensinya sebagai bagian penting dari rantai pasok pangan lokal.

Permasalahan krusial di Pabrik Tahu Pak Aco yang teridentifikasi terletak pada tahap pasca-produksi adalah di proses pendinginan dan penyimpanan sementara tahu setelah proses pengepresan. Tahapan idealnya berfungsi untuk memadatkan tekstur tahu, justru menjadi titik lemah dalam alur produksi. Tahu yang baru selesai dicetak hanya diletakkan begitu saja di atas meja atau bahkan di lantai produksi tanpa wadah yang memadai. Praktik ini terlihat sepele kenyataan memicu serangkaian masalah yang saling berkaitan dan berdampak negatif pada operasional pabrik secara keseluruhan.

Perihal perspektif efisiensi produksi, penataan aliran produksi tahu yang tidak teratur di area kerja terbatas menyebabkan pemanfaatan menjadi sangat tidak optimal. Kondisi langsung menghambat secara kelancaran alur kerja dan menciptakan (bottleneck), penumpukan terutama sebelum pemotongan tahap pengemasan (Wignjosoebroto, 2008). Tata letak fasilitas dan alur material terencana yang tidak merupakan penyebab inefisiensi pada industri skala kecil, akhirnya menurunkan volume produksi dan meningkatkan waktu tunggu (Hilmansyah & Handayani, 2022). Tata letak fasilitas yang tidak ini terbukti efektif seperti dapat memperlambat aliran produksi secara signifikan. Perbaikan alur kerja menjadi fokus utama dalam banyak program pemberdayaan UKM untuk meningkatkan efisiensi (Berlianty dkk., 2024).

Selain itu, dampak pada kualitas dan kebersihan produk juga sangat signifikan. Penumpukan tahu dalam jumlah banyak menyebabkan deformasi bentuk pada tahu di lapisan bawah, sehingga menurunkan kualitas fisik dan iual. Lebih penting meletakkan tahu di tempat dengan permukaan yang tidak higienis muncul risiko kontaminasi dari lingkungan sekitar yang lembab dan kurang bersih (Muanah, Huda & Suwati, 2021). Praktik higiene dan sanitasi yang kurang merupakan masalah terhadap keamanan pangan, terutama produk basah seperti tahu yang rentan terhadap pertumbuhan mikroba (Purba dkk., 2014; Pratiwi dkk., 2025).

Aspek lain yang tidak kalah penting adalah dampak negatif terhadap kesehatan dan keselamatan pekerja. Proses pemindahan dan penataan tahu secara manual memaksa pekerja untuk kali melakukan berulang gerakan membungkuk dan mengangkat beban dengan postur yang tidak ergonomis. Desain sistem kerja seperti ini dapat meningkatkan beban kerja fisik secara signifikan dan menjadi pemicu utama keluhan muskuloskeletal seperti nyeri punggung dan bahu (Nurmianto, 2018). Intervensi ergonomis melalui perbaikan alat dan metode kerja terbukti efektif dalam mengurangi risiko cedera dan meningkatkan kenyamanan pekerja di industri kecil (Apriantini dkk., 2022).


Berdasarkan penilaian awal dengan mengidentifikasi masalah multidimensi meliputi aspek efisiensi, kualitas produk, kebersihan, ergonomi menjadi program P2M ini diinisiasi. Tujuan kegiatan ini adalah memberikan solusi praktis yang diwujudkan melalui tahapan desain konseptual pengembangan. Pada tahap ini.

produksi dirancang usulan sarana berupa rak pendingin tahu vang fungsional, mempertimbangkan prinsip desain yang efisien dan ergonomis (Bridger, 2018). Intervensi desain rak pendinginan tahu ini kemudian disosialisasikan pada tahap serah terima. Melalui usulan ini, diharapkan Tahu Pak Aco UKM memiliki rekomendasi untuk meningkatkan produktivitas, menjaga mutu produk, dan menciptakan lingkungan kerja yang lebih aman dan ergonomis.

METODE

Kegiatan pengabdian kepada masyarakat ini dilaksanakan di lokasi Usaha Kecil Menengah (UKM) Pabrik Tahu Sari Murni milik Bapak Aco Sudarso, berlokasi di Kampung Krajan, Mojosongo, Surakarta. Pendekatan yang digunakan dalam penyelesaian masalah adalah rekayasa desain (engineering design approach), menekankan pada identifikasi masalah di lapangan untuk menghasilkan solusi yang fungsional dan aplikatif.

Rangkaian kegiatan P2M meliputi identifikasi masalah dan kebutuhan, penentuan spesifikasi desain, perancangan dan pemodelan solusi, selanjutnya tahap sosialisasi dan diseminasi hasil kepada mitra seperti pada Gambar 1.

Gambar 1: Alur Metode Pelaksanaan Program Perancangan Rak Pendingin Tahu

Tahap 1: Penilaian Awal

Tahapan kegiatan pengabdian ini adalah penilaian awal, bertujuan untuk mengidentifikasi permasalahan secara komprehensif langsung di lokasi mitra. Tahap diawali dengan observasi lapangan, di mana tim pelaksana mengamati secara langsung seluruh alur proses produksi di Pabrik Tahu Sari Murni, dengan fokus pada proses dan penyimpanan pendinginan sementara. Observasi ini mencakup analisis tata letak fasilitas, kondisi lingkungan kerja, dan postur pekerja.

Selanjutnya, dilakukan wawancara mitra secara mendalam dengan pemilik usaha, Bapak Aco Sudarso, serta para pekerjanya. Wawancara ini bertujuan untuk menggali informasi kualitatif mengenai kendala spesifik, tantangan operasional, dan kebutuhan yang dirasakan oleh mitra. Data kedua kegiatan kemudian diintegrasikan untuk analisis kebutuhan. meniadi dasar perancangan solusi yang tepat guna dan sesuai dengan kondisi nyata lapangan.

Tahap 2: Desain Konseptual

Setelah identifikasi kebutuhan mitra, kegiatan dilanjutkan ke desain konseptual. Pada tahap ini, pelaksana mulai menerjemahkan hasil analisis kebutuhan menjadi spesifikasi teknis yang terukur. Proses ini diawali dengan definisi spesifikasi teknis, di mana tim merumuskan kriteria desain untuk rak pendingin, seperti dimensi yang optimal, kapasitas sesuai volume produksi harian. dan fitur-fitur fungsional lainnya. Seluruh kriteria ini dirumuskan untuk memastikan rancangan dapat menjawab masalah dihadapi yang mitra. Langkah berikutnya adalah seleksi material dan ergonomi. Tim melakukan analisis untuk memilih material yang sesuai yaitu bersifat higienis, tahan lembab, kuat. mudah dibersihkan. mempertimbang-kan prinsip ergonomi untuk memastikan rak dapat digunakan dengan nyaman dan aman oleh pekerja, sehingga mengurangi risiko kelelahan dan cedera.

Tahap 3: Pengembangan

Tahap ketiga adalah pengembangan, di mana konsep desain yang telah matang diwujudkan menjadi sebuah model yang lebih konkret. Proses ini dimulai dengan pemodelan 3D, yaitu pembuatan model dari pendingin dimensi rak menggunakan perangkat lunak desain seperti Autodesk Inventor. Pemodelan ini memungkinkan tim untuk memvisualisasikan rancangan secara detail, memeriksa proporsi, dan mengidentifikasi potensi masalah desain sebelum masuk ke tahap produksi fisik.

Proses pemodelan digital ini sangat penting untuk memitigasi risiko kesalahan desain yang menyebabkan biaya tambahan saat pembuatan prototipe. Setelah model 3D selesai, dilakukan validasi fungsional secara simulasi untuk menganalisis kekuatan struktur, stabilitas, dan fungsionalitas desain. Validasi ini penting untuk memastikan rancangan rak pendingin tidak hanya terlihat baik secara visual, tetapi kuat dan mampu menjalankan fungsi dengan efektif di lingkungan produksi.

Tahap 4: Serah Terima

Tahap terakhir dari rangkaian kegiatan pengabdian ini adalah serah terima. Pada tahap ini, hasil akhir dari proses perancangan disosialisasikan dan diserahkan kepada mitra. Kegiatan diawali dengan presentasi desain final, di mana tim memaparkan usulan desain rak pendingin yang telah divalidasi kepada Bapak Aco Sudarso dan para pekerjanya. Sesi ini dilanjutkan dengan sesi umpan balik mitra, diskusi interaktif untuk mendengarkan tanggapan, masukan, dan pertanyaan dari pihak mitra mengenai desain yang diusulkan. Berdasarkan hasil diskusi tersebut, kegiatan diakhiri dengan rekomendasi. penyerahan berisi rangkuman hasil desain beserta saransaran praktis untuk tahap implementasi, seperti pembuatan prototipe, pemilihan vendor, dan estimasi biaya, sebagai panduan bagi mitra untuk merealisasikan solusi ini di masa mendatang.

HASIL DAN PEMBAHASAN

Kegiatan pengabdian kepada masyarakat ini menghasilkan sebuah usulan solusi teknis yang didasarkan pada analisis mendalam terhadap permasalahan yang ada di UKM Tahu Sari Murni. Hasil kegiatan disajikan sesuai tahapan pelaksanaan, mulai dari identifikasi kondisi awal mitra hingga usulan desain akhir sebagai solusi.

1. Kondisi Awal Mitra Berdasarkan Penilaian Awal

Pada tahap penilaian awal, observasi lapangan dan wawancara dengan mitra berhasil mengidentifikasi beberapa permasalahan krusial. Hasil pengamatan menunjukkan bahwa proses pendinginan dan penyimpanan sementara tahu pasca-pengepresan dilakukan tanpa fasilitas yang memadai. baru selesai vang diletakkan secara langsung di atas meja produksi atau bahkan di lantai yang beralaskan terpal seadanya. Praktik ini belum memenuhi ielas standar kebersihan dasar untuk produksi pangan, di mana produk seharusnya tidak bersentuhan langsung dengan lantai. Selain itu, genangan air di sekitar penyimpanan sementara juga meningkatkan kelembaban dan risiko pertumbuhan mikroba yang diinginkan. Kondisi ini, seperti yang terdokumentasi pada Gambar 2, memperlihatkan alur kerja yang tidak teratur, pemanfaatan ruang yang tidak efisien, dan potensi kontaminasi produk yang tinggi.

Gambar 2: Proses Wawancara untuk Identifikasi Kebutuhan Mitra Pengabdian

Wawancara dengan Bapak Aco Sudarso dan para pekerja mengonfirmasi bahwa praktik ini sering menyebabkan tahu di nampan bagian bawah terkontaminasi terkena tetes pentirisan air tahu dari nampan tahu di bagian atas dan juga memperlambat proses pemotongan karena harus menunggu giliran tempat.

Gambar 3: Proses Penataan Tahu Secara Manual oleh Pekerja

Masalah kontaminasi silang ini menjadi perhatian utama karena dapat menurunkan kualitas higienis produk akhir yang akan dijual ke konsumen. Keterlambatan proses ini juga menciptakan bottleneck, memaksa lini produksi berhenti sejenak dan akhirnya mengurangi hasil produksi harian.

2. Analisis Permasalahan

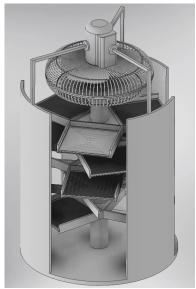
Data penilaian awal menunjukkan bahwa masalah bersifat multidimensional. Aspek efisiensi, penumpukan tahu di area kerja yang terbatas menciptakan bottleneck dalam alur produksi. Aspek kualitas, produk tertindih mengalami deformasi fisik, sehingga menurunkan nilai jualnya. Aspek kebersihan, kontak langsung produk dengan permukaan yang kurang higienis sangat berisiko terhadap kontaminasi silang. Terakhir, aspek ergonomi, pekerja harus berulang kali membungkuk untuk menata mengambil tahu, seperti pada Gambar 4, postur kerja yang tidak aman dan dapat memicu keluhan muskuloskeletal dalam jangka panjang.

Gambar 4: Postur Kerja Tidak Ergonomis Saat Menata Tahu di Meja Rendah

3. Perumusan Spesifikasi Desain Rak Pendingin

Berdasarkan analisis kebutuhan, tahap desain konseptual merumuskan spesifikasi teknis untuk rak pendingin yang ideal. Spesifikasi utama yang ditetapkan dirangkum dalam Tabel 1, mencakup aspek fungsional, ergonomis, dan higienitas untuk memastikan solusi yang diusulkan sesuai kondisi lingkungan kerja di pabrik tahu.

Tabel 1. Spesifikasi Teknis Desain Rak Pendingin Tahu

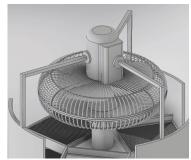

Kategori	Spesifikasi	Tujuan
Dimensi	Tinggi:	Optimalisasi
&	±150 cm,	ruang vertikal
Kapasitas	Diameter:	& menampung

	±80 cm, 8-10	satu siklus
	tingkat	produksi
Material	Stainless Steel	Tahan lama,
	atau material	mudah
	tahan karat &	dibersihkan,
	food grade	dan aman untuk
		produk pangan
Desain	Berlubang	Memfasilitasi
Rak	(perforated	sirkulasi udara
	plate) atau	& penirisan sisa
	berbentuk jaring	air
Ergonomi	Jarak antar rak	Mengurangi
	±15 cm, dapat	gerakan
	diputar	membungkuk
	(opsional)	& memudahkan
		jangkauan
Mobilitas	Dilengkapi roda	Mudah
	dengan	dipindahkan
	pengunci	untuk
		pembersihan
		area kerja
L		

Tabel 1 menguraikan bagaimana dimensi rak dirancang untuk mengoptimalkan ruang vertikal dan bagaimana material stainless steel dipilih untuk menjamin kebersihan. Selain itu, kriteria ergonomis seperti ketinggian rak dapat disesuaikan untuk meminimalkan gerakan membungkuk yang selama ini menjadi masalah utama. Dengan demikian. spesifikasi yang dirumuskan merupakan jawaban langsung terhadap temuan masalah di lapangan.

4. Usulan Desain Rak Pendingin Tahu

Pada tahap Pengembangan, seluruh spesifikasi teknis diwujudkan menjadi model tiga dimensi (3D) menggunakan perangkat lunak Autodesk Inventor. Hasilnya adalah usulan desain rak pendingin berbentuk silinder vertikal dengan sistem rak bertingkat yang disusun secara spiral, seperti pada Gambar 5.

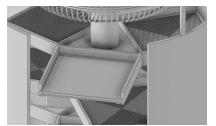

Gambar 5: Model 3D Usulan Desain Rak Pendingin Tahu

Desain ini dipilih karena mampu menampung kapasitas tahu yang besar tanpa memakan banyak area lantai. Struktur vertikalnya secara efektif memanfaatkan ruang ke atas, yang merupakan solusi ideal untuk area produksi yang terbatas.

Seperti pada model 3D, setiap nampan tahu ditempatkan pada penyangga individual dengan kemiringan tertentu untuk membantu proses penirisan air. Susunan spiral ini juga dirancang agar pekerja dapat dengan mudah menjangkau setiap tingkatan tanpa harus berpindah posisi terlalu banyak. Selain itu, pada bagian atas rak ditambahkan sebuah kipas berfungsi angin (fan) untuk mempercepat sirkulasi udara di sekitar tahu, sehingga proses pendinginan menjadi lebih efektif.

Struktur luar rak yang setengah terbuka bertujuan untuk melindungi dari sekaligus tahu benturan memberikan akses yang mudah bagi pekerja. Desain tatakan nampan yang berlubang juga memastikan bahwa air sisa pengepresan dapat langsung menetes ke bawah dan tidak menggenang di permukaan tahu. Secara keseluruhan, setiap komponen dalam model 3D ini dirancang secara terintegrasi untuk memaksimalkan fungsionalitas dan menjawab kebutuhan spesifik di lokasi mitra.

Salah satu inovasi utama dalam desain rak pendingin ini adalah integrasi sistem sirkulasi udara aktif. Seperti pada Gambar 6, sebuah unit kipas ditempatkan secara strategis di bagian atas struktur rak. Penambahan komponen ini bertujuan untuk mempercepat proses pendinginan tahu setelah proses pengepresan.


Gambar 6: Model 3D Detail Komponen Kipas Sirkulasi Udara pada Rak Pendingin

Desain pelindung berbentuk jaring di sekitar bilah kipas juga berfungsi untuk menjamin keamanan operasional bagi para pekerja. Mekanisme ini memastikan aliran udara yang dihasilkan dapat tersebar secara merata ke seluruh tingkatan rak di bawahnya. Dengan demikian, integrasi kipas ini tidak hanya mempercepat pendinginan tetapi juga membantu menjaga konsistensi kualitas tahu yang dihasilkan setelah proses pengepresan.

Proses pendinginan lebih cepat ini untuk menghambat pertumbuhan mikroba, sehingga meningkatkan keamanan pangan produk. Penyebaran udara yang merata juga mencegah terjadinya pendinginan yang tidak seragam, yang dapat mempengaruhi tekstur akhir dari tahu. Oleh karena itu, komponen kipas ini menjadi elemen kunci yang secara langsung

meningkatkan efisiensi produksi dan kualitas akhir produk secara simultan.

Detail desain nampan merupakan salah satu aspek paling krusial dalam rancangan rak pendingin ini. Seperti yang terlihat pada gambar, setiap nampan dirancang dengan berlubang jaring permukaan atau (perforated plate) yang rapat. Desain ini spesifik ditujukan memaksimalkan proses penirisan air sisa pengepresan, seperti pada Gambar

Gambar 7: Detail Desain Nampan Peniris pada Rak Pendingin

Selain itu, setiap nampan dilengkapi dengan dinding pembatas di sekelilingnya untuk mencegah tahu tergelincir atau jatuh. Kemiringan nampan juga diatur sedemikian rupa agar air dapat mengalir dengan lancar ke satu sisi sebelum menetes ke bawah.

Permukaan yang berlubang untuk memfasilitasi sirkulasi udara dari bagian sehingga kipas di atas, pendinginan dapat terjadi secara lebih merata di seluruh permukaan tahu. Penggunaan material food grade seperti stainless steel untuk nampan menjamin tidak terkontaminasi pada tahu. Dengan demikian, desain nampan ini menjawab masalah higienitas dan kualitas tahu yang sebelumnya teridentifikasi. Struktur penyangga yang kuat untuk memastikan kapasitas beban menampung tahu dalam jumlah besar. Pada akhirnya, detail-detail inilah yang membuat desain rak ini unggul secara fungsional.

Detail pengerjaan pada permukaan nampan menjadi fokus untuk memaksimal-kan fungsionalitas penirisan dan sirkulasi udara. Seperti divisualisasikan pada Gambar permukaan nampan dirancang dengan pola garis-garis konsentris membentuk kisi-kisi. Pola geometris ini hanya menambah tidak kekakuan struktural pada nampan tetapi juga menciptakan alur bagi sisa air untuk mengalir. Setiap celah di antara garisgaris tersebut berfungsi sebagai saluran drainase sekaligus jalur masuk bagi udara. Desain ini memastikan tidak ada genangan air yang dapat merusak tekstur tahu.

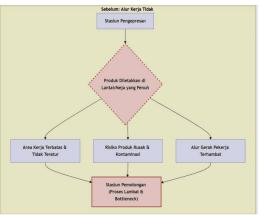
Gambar 8: Detail Permukaan Nampan Berpola Konsentris

Pola konsentris ini membantu menahan posisi tahu agar tidak mudah bergeser selama proses penataan. Dari segi produksi, desain kisi-kisi ini lebih mudah untuk dibuat dan dibersihkan dibandingkan dengan pola jaring yang lebih rumit. Dengan demikian. desain ini menawarkan keseimbangan yang optimal antara efektivitas fungsional, kemudahan manufaktur, dan aspek higienitas. Hal ini juga memastikan bahwa aliran udara dari kipas dapat menembus dari bawah, mempercepat proses pendinginan secara merata. Pada akhirnya, detail inilah yang secara signifikan berkontribusi pada peningkatan kualitas produk akhir.

Visualisasi tampak depan dari desain rak pendingin ini memperlihatkan struktur kokoh dan fungsional secara keseluruhan. Desain simetris dan vertikal dirancang untuk memberikan stabilitas maksimal saat menampung beban tahu, seperti divisualisasikan pada Gambar 9.

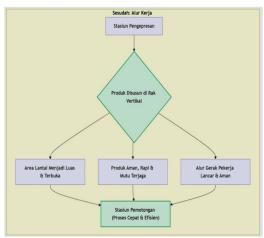
Gambar 9: Tampak Depan Desain Rak Pendingin Tahu

Desain ini, terlihat bagaimana setiap nampan diatur secara berjenjang di kedua sisi pilar utama. Dinding pelindung di bagian luar memberikan keamanan tambahan dan menjaga kebersihan tahu dari lingkungan sekitar. Komponen kipas di bagian atas juga terlihat proporsional dengan keseluruhan struktur, memastikan distribusi aliran udara yang seimbang.


Susunan rak yang teratur ini secara langsung akan meningkatkan efisiensi alur kerja dan mengurangi kepadatan di area produksi. Desain ini memperhitungkan aspek ergonomis, di mana ketinggian setiap rak dapat dijangkau dengan mudah oleh pekerja. Celah di bagian tengah dan samping memungkinkan akses yang mudah untuk penataan dan pengambilan tahu.

Secara keseluruhan bahwa desain usulan tidak hanya fungsional tetapi juga estetis dan rapi. Penerapan desain ini akan membawa perubahan bagi operasional harian di Pabrik Tahu Sari Murni.

5. Peningkatan Efisiensi dan Optimalisasi Ruang


Usulan desain rak pendingin ini secara langsung menjawab masalah inefisiensi ruang. Dengan memindahkan penyimpanan tahu dari meja atau lantai ke vertikal, area lantai yang sebelumnya terpakai dapat dibebaskan. Hal ini tidak hanya membuat ruang kerja menjadi lebih leluasa, tetapi juga melancarkan alur pergerakan pekerja dan material. Proses penataan yang lebih teratur pada menghilangkan rak juga akan bottleneck, sehingga waktu tunggu dari proses pengepresan ke pemotongan secara signifikan.

Pembebasan area lantai ini juga membuka peluang untuk penataan ulang fasilitas lain, seperti menciptakan area khusus untuk pembersihan peralatan agar lebih higienis. Secara jangka panjang, kelancaran alur produksi ini akan berkontribusi pada peningkatan volume output harian secara konsisten. Lingkungan kerja yang lebih teratur secara langsung meningkatkan aspek keselamatan, mengurangi risiko pekerja tersandung atau tergelincir. Pemanfaatan ruang vertikal membuktikan bahwa peningkatan kapasitas produksi tidak selalu memerlukan perluasan pabrik area secara fisik. Dengan demikian, intervensi melalui perbaikan fasilitas penyimpanan ini mampu mentransformasi sistem produksi dari yang sebelumnya tidak teratur menjadi lebih terstruktur dan efisien, lihat Gambar 10.

Gambar 10: Identifikasi Masalah pada Alur Kerja Sebelum Intervensi

Gambar 10 adalah kondisi awal proses dimulai stasiun pengepresan. Setelah itu, tahu langsung diletakkan lantai di atau Keputusan ini memicu tiga masalah utama secara simultan. Pertama, area kerja menjadi sangat terbatas dan tidak teratur. Kedua, muncul risiko produk rusak akibat tertindih dan kontaminasi dari lingkungan yang kurang higienis. Ketiga, alur gerak pekerja menjadi terhambat, menyulitkan mereka untuk bergerak dan bekerja. Dengan kata lain, praktik penyimpanan menjadi akar penyebab dari inefisiensi, penurunan kualitas. dan potensi bahaya lingkungan kerja.

Gambar 11: Perbaikan pada Alur Kerja Sesudah Intervensi

Gambar 10 adalah alur kerja setelah penerapan solusi vang diusulkan. Proses tetap dimulai dari stasiun pengepresan. Namun, perbedaannya terletak pada langkah berikutnya, di mana nampan tahu disusun di rak vertikal. Perubahan ini menghasilkan tiga dampak positif. Pertama, area lantai menjadi lebih luas dan terbuka, menciptakan lingkungan kerja yang lebih lega. Kedua, tahu menjadi aman, tersusun rapi, dan mutu lebih terjaga karena tidak ada yang tertindih atau terkontaminasi. Ketiga, alur gerak pekerja menjadi lancar dan aman, memungkinkan bekerja dengan lebih nyaman dan efisien. Semua dampak positif ini secara langsung memperbaiki kondisi di stasiun pemotongan, yang kini menjadi lebih cepat dan efisien.

Gambar 10 dan 11 menggambarkan visual secara membandingkan dua kondisi alur kerja di Pabrik Tahu Sari Murni, yaitu kondisi sebelum dan sesudah adanya intervensi berupa usulan rak pendingin vertikal. Kedua bagan ini menyoroti bagaimana proses penyimpanan dapat memberikan dampak signifikan terhadap keseluruhan sistem aliran produksi.

6. Peningkatan Kualitas dan Higienitas Tahu

Segi kualitas, setiap nampan tahu ditempatkan pada tingkatannya masing-masing, sehingga tidak ada lagi produk yang tertindih atau tertekan. Hal ini akan meminimalkan jumlah produk yang rusak atau cacat bentuk. Selain itu, penggunaan material *perforated plate* mendukung aspek higienitas. Fitur ini memungkinkan sisa air dari proses pengepresan dapat menetes ke bawah dan tidak menggenang, menjaga tahu tetap kering dan bersih. Penggunaan material *stainless steel* yang mudah

dibersihkan juga akan mencegah akumulasi kotoran dan pertumbuhan mikroba.

7. Perbaikan Aspek Ergonomi dan Keselamatan Kerja

Ketinggian rak yang dirancang sesuai jangkauan rata-rata pekerja akan memperbaiki postur kerja secara drastis. Pekerja tidak perlu lagi membungkuk berulang kali, sehingga beban pada punggung dan otot dapat berkurang. Hal ini menurunkan risiko kelelahan dan muskuloskeletal. potensi cedera Lingkungan kerja yang lebih teratur dan tidak licin karena genangan air juga akan meningkatkan keselamatan kerja secara keseluruhan, menciptakan suasana yang lebih aman dan nyaman bagi para pekerja.

Stasiun pengepresan merupakan salah satu titik krusial dalam alur produksi tahu di mana kandungan air dalam gumpalan tahu dikurangi. Seperti yang terlihat pada Gambar 12, proses ini masih dilakukan secara manual menggunakan alat pengepres sederhana dengan sistem katrol.

Gambar 12: Kondisi Lingkungan Kerja pada Tahap Pengepresan

Area kerja di sekitar stasiun ini tampak basah dan uap panas menunjukkan tingginya intensitas

aktivitas fisik dan kondisi lingkungan yang menantang bagi para pekerja. Kondisi lantai basah dan licin meningkatkan risiko tergelincir bagi pekerja. Selain itu, penempatan bahan baku dan produk jadi yang berdekatan dengan area pengepresan menunjukkan belum adanya pemisahan area kerja yang jelas sesuai standar GMP. Oleh karena itu, perbaikan pada stasiun ini tidak hanya menyangkut efisiensi alat, tetapi juga perbaikan tata letak dan manajemen keselamatan kerja secara keseluruhan.

8. Rekomendasi untuk Implementasi

Kegiatan pengabdian ini diakhiri dengan penyerahan rekomendasi praktis kepada mitra. Rekomendasi utama adalah agar mitra segera membuat prototipe fisik dari desain diusulkan untuk diuji coba langsung di lingkungan produksi. Tim pelaksana memberikan saran mengenai pemilihan bengkel lokal yang mampu mengerjakan dengan material rak stainless steel, beserta perkiraan biaya produksi. Dengan adanya panduan ini, diharapkan mitra dapat merealisasikan solusi ini secara mandiri, sehingga manfaat dari kegiatan pengabdian ini dapat dirasakan secara berkelanjutan.

SIMPULAN

Kegiatan pengabdian ini bahwa masalah di UKM Tahu Sari Murni dari pendinginan fasilitas rak penyimpanan tahu pasca-pengepresan. Praktik saat ini terbukti menyebabkan inefisiensi ruang, bottleneck produksi, memungkinkan penurunan kualitas produk, dan menciptakan lingkungan kerja yang tidak higienis dan tidak ergonomis. Sebagai solusi. berhasil dirancang usulan rak pendingin vertikal yang fungsional, dengan fiturfitur seperti nampan berlubang dan sirkulasi udara aktif, secara terintegrasi mampu mengatasi semua masalah tersebut.

Usulan desain ini diterima dengan sangat baik oleh mitra dan potensi manfaat untuk operasional Kegiatan ini tidak hanya harian. menghasilkan solusi teknis, tetapi juga berhasil meningkatkan kesadaran mitra akan pentingnya investasi pada fasilitas produksi yang baik. Rekomendasi adalah agar mitra dapat merealisasikan pembuatan prototipe fisik, sehingga secara nyata meningkatkan produktivitas, men-jaga mutu tahu, menciptakan lingkungan kerja yang lebih aman dan layak.

UCAPAN TERIMA KASIH

Penulis mengucapkan terima Tim kepada Capstone kasih mahasiswa Teknik Industri FT UNS Arda Survo Wicaksono yaitu (I0321011) dan Fathin Fahira (I0321044) di bawah bimbingan Prof. Lobes Herdiman. Terima kasih atas kerjasamanya dengan Bapak Sudarso selaku Owner Pabrik Tahu Sari berlokasi di Kampung Kraian. Mojosongo, Surakarta.

DAFTAR PUSTAKA

Apriantini, N. P., Sutajaya, I M., Dewi, N. P. S. R., Wijana, N., Citrawathi, D. M. (2022). Berat Dijunjung Beban yang Perbedaan Mengakibatkan Keluhan Muskuloskeletal dan Kelelahan serta Kontribusinya Terhadap Produktivitas Kerja Buruh Angkut di Pasar Badung. Jurnal Pendidikan Biologi Undiksha, Vol. 9, No. 2, pp. 159-173.

- https://doi.org/10.23887/jjpb.v9i 2.47655
- Berlianty, I., Aziza, R. A., Wibawa, T., Sadi, Putro, G. M. (2024). Pendampingan UMKM dalam Implementasi Ergonomi untuk Meningkatkan **Produktivitas** Pekeria Sandal Kulit. JURPIKAT (Jurnal Pengabdian Kepada Masyarakat), Vol.5, No. 4, 1530-1541, pp. https://doi.org/10.37339/jurpikat .v5i4.2065
- Bridger, R. S. (2018). *Introduction to Human Factors and Ergonomics* (4th ed.). CRC Press.
- Dwikai, B. A., Sari, N. N., Apsarini, P. M., Utami, S. W. (2024).

 Analisis Tata Letak Penanganan Bahan dan GMP pada UMKM Hiqmah Bunga Telang, Kabupaten Cilacap.

 EDUFORTECH, Vol. 9, No. 2, pp. 78-84. https://doi.org/10.17509/edufort ech.v9i2.69589
- Hilmansyah, I. A., dan Handayani, W. (2022). Pengaruh Tata Letak Produksi Terhadap Efisiensi Usaha dan Daya Saing UD. Barokah Lamongan. *Jurnal Ekonomidan Bisnis Dharma Andalas*, Vol. 24, No 1, pp. 227-241, https://doi.org/10.47233/jebd.v24i1.319
- Muanah, Huda, A. A., dan Suwati (2021). Analisis Ergonomika Lingkungan Fisik Ruang Produksi Tahu terhadap Tingkat Keamanan dan Kenyamanan Pekerja di Kelurahan Abian Tubuh Kota Mataram. *Jurnal Keteknikan Pertanian Tropis dan Biosistem*, Vol. 9, No. 2, pp. 194-201, https://doi.org/10.21776/ub.jkptb .2021.009.02.10

- Munthe, A., Yarham, M., Siregar, R. (2023). Peranan Usaha Mikro Kecil Menengah Terhadap Perekonomian Indonesia. *Jurnal Ekonomi Bisnis, Manajemen dan Akuntansi (JEBMAK)*, Vol. 2, No. 3, pp. 593-614. https://doi.org/10.61930/jebmak. v2i3.321
- Nurmianto, E. (2008). *Ergonomi:* Konsep Dasar dan Aplikasinya. Guna Widya.
- Pratiwi, N. P. S., Rahayu, W. P., dan Nurjanah, (2025).S. Sikap, Pengetahuan, dan Perilaku Higiene dan Sanitasi Penjamah Pangan di Taman Tegalega Kota Bandung. Jurnal Mutu Pangan: Indonesian Journal of Food Quality, Vol. No. 1. 84-96. pp. https://doi.org/10.29244/jmpi.20 25.12.1.84
- Purba, D. F., Nuraida, L., dan Koswara, S. (2014). Efektivitas Program Peningkatan Mutu Dan Keamanan Pangan Industri Rumah Tangga Pangan (IRTP) Di Kabupaten Cianjur. *Jurnal Standardisasi*, Vol. 16. No. 2, pp. 103-112
- Renate, D., Lavlinesia, Daulay, D. P., dan Edison. (2025). Usaha Pemberdayaan Masyarakat Melalui Pengembangan Teknik Pengemasan Vakum Pada Usaha Industri Makanan Ringan Cimol di Kecamatan Danau. *MARTABE: Jurnal Pengabdian Masyarakat*, Vol. 8. No. 10, pp. 3892-3897, https://doi.org/10.31604/jpm.v8i
 - https://doi.org/10.31604/jpm.v8i 10.3892-3897
- Rostwentivaivi, V., dan Fizriani, A. (2019). Penerapan Good Manufacturing Practices (GMP) Pada Pengrajin Tahu Jojoh Kabupaten Garut. *Prosiding*

Seminar Nasional Program Pengabdian Masyarakat (ABDIMAS) II, Sinergi Dan Strategi Akademisi, Business Dan Government (ABG) Dalam Mewujudkan Pemberdayaan Masyarakat Yang Berkemajuan Di Era Industri 4.0, pp. 907-918.

Sitompul, P. S., Sari, M. M., Br Lumban Gaol, C. M., Harahap, L. M. (2025). Transformasi Digital UMKM Indonesia: Tantangan dan Strategi Adaptasi di Era Ekonomi Digital. *Jurnal Manajemen Bisnis Digital Terkini*, Vol. 2, No. 2, pp. 09-18, https://doi.org/10.61132/jumbidt er.v2i1.487

Suprapto, Jubaidah, Lisyanto, Iskandar, H., Panjaitan, B., Riadi, S., Aldori, Y. (2025). Penerapan Teknologi Tepat Guna Chopper Blender Pengolahan Pakan Ternak Di Desa Klambir Lima, Kecamatan Hamparan Perak. *MARTABE: Jurnal Pengabdian Masyarakat*, Vol. 8, No. 8, pp. 3479-3486, https://doi.org/10.31604/jpm.v8i 8.3479-3486

Wignjosoebroto, S. (2008). *Ergonomi, Studi Gerak dan Waktu*. Guna Widya.